DOI QR코드

DOI QR Code

BJÖRLING FORMULA FOR MEAN CURVATURE ONE SURFACES IN HYPERBOLIC THREE-SPACE AND IN DE SITTER THREE-SPACE

  • Received : 2015.11.30
  • Published : 2017.01.31

Abstract

We solve the $Bj{\ddot{o}}rling$ problem for constant mean curvature one surfaces in hyperbolic three-space and in de Sitter three-space. That is, we show that for any regular, analytic (and spacelike in the case of de Sitter three-space) curve ${\gamma}$ and an analytic (timelike in the case of de Sitter three-space) unit vector field N along and orthogonal to ${\gamma}$, there exists a unique (spacelike in the case of de Sitter three-space) surface of constant mean curvature 1 which contains ${\gamma}$ and the unit normal of which on ${\gamma}$ is N. Some of the consequences are the planar reflection principles, and a classification of rotationally invariant CMC 1 surfaces.

Keywords

References

  1. R. Aiyama and K. Akutagawa, Kenmotsu-Bryant type representation formulas for constant mean curvature surfaces in $H^3(-c^2)$ and $S^3_1(c^2)$, Ann. Global Anal. Geom. 17 (1999), no. 1, 49-75. https://doi.org/10.1023/A:1006504614150
  2. K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), no. 1, 13-19. https://doi.org/10.1007/BF01179263
  3. J. A. Aledo, J. A. Galvez, and P. Mira, Bjorling Representation for spacelike surfaces with H = cK in $L^3$, Proceedings of the II International Meeting on Lorentzian Geometry, pp. 2-7, Publ. de la RSME, 2004.
  4. L. J. Alias, R. M. B. Chaves, and P. Mira, Bjorling problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 289-316. https://doi.org/10.1017/S0305004102006503
  5. A. I. Bobenko, T. V. Pavlyukevich, and B. A. Springborn, Hyperbolic constant mean curvature one surfaces: spinor representation and trinoids in hypergeometric functions, Math. Z. 245 (2003), no. 1, 63-91. https://doi.org/10.1007/s00209-003-0511-5
  6. D. Brander, Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc. 150 (2011), no. 3, 527-556. https://doi.org/10.1017/S0305004111000077
  7. D. Brander and J. F. Dorfmeister, The Bjorling problem for non-minimal constant mean curvature surfaces, Comm. Anal. Geom. 18 (2010), no. 1, 171-194. https://doi.org/10.4310/CAG.2010.v18.n1.a7
  8. cof mean curvature one in hyperbolic space, Theorie des varietes minimales et applications (Palaiseau, 1983-1984), Asterisque (1987), no. 154-155, 12, 321-347, 353 (1988).
  9. R. M. B. Chaves, M. P. Dussan, and M. Magid, Bjorling problem for timelike surfaces in the Lorentz-Minkowski space, J. Math. Anal. Appl. 377 (2011), no. 2, 481-494. https://doi.org/10.1016/j.jmaa.2010.10.076
  10. M. P. Dussan and M. Magid, The Bjorling problem for timelike surfaces in ${\mathbb{R}}^2_4$, J. Geom. Phys. 73 (2013), 187-199. https://doi.org/10.1016/j.geomphys.2013.06.004
  11. S. Fujimori, Spacelike CMC 1 surfaces with elliptic ends in de Sitter 3-space, Hokkaido Math. J. 35 (2006), no. 2, 289-320. https://doi.org/10.14492/hokmj/1285766359
  12. S. Fujimori, Spacelike mean curvature 1 surfaces of genus 1 with two ends in de Sitter 3-space, Kyushu J. Math. 61 (2007), no. 1, 1-20. https://doi.org/10.2206/kyushujm.61.1
  13. S. Fujimori, Y. W. Kim, S.-E. Koh, W. Rossman, H. Shin, H. Takahashi, M. Umehara, K. Yamada, and S.-D. Yang, Zero mean curvature surfaces in ${\mathbb{L}}^3$ containing a light-like line, C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 975-978. https://doi.org/10.1016/j.crma.2012.10.024
  14. S. Fujimori and W. Rossman, Higher-genus mean curvature-one catenoids in hyperbolic and de Sitter 3-spaces, Kyushu J. Math. 64 (2010), no. 2, 169-180. https://doi.org/10.2206/kyushujm.64.169
  15. S. Fujimori, W. Rossman, M. Umehara, K. Yamada, and S.-D. Yang, Spacelike mean curvature one surfaces in de Sitter 3-space, Comm. Anal. Geom. 17 (2009), no. 3, 383-427. https://doi.org/10.4310/CAG.2009.v17.n3.a1
  16. S. Fujimori, W. Rossman, M. Umehara, K. Yamada, and S.-D. Yang, New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space, Results Math. 56 (2009), no. 1-4, 41-82. https://doi.org/10.1007/s00025-009-0443-4
  17. J. A. Galvez and P. Mira, The Cauchy problem for the Liouville equation and Bryant surfaces, Adv. Math. 195 (2005), no. 2, 456-490. https://doi.org/10.1016/j.aim.2004.08.007
  18. Y. W. Kim, S.-E. Koh, H. Shin, and S.-D. Yang, Generalized surfaces with constant H/K in Euclidean three-space, Manuscripta Math. 124 (2007), no. 3, 343-361. https://doi.org/10.1007/s00229-007-0125-z
  19. Y. W. Kim and S.-D. Yang, Prescribing singularities of maximal surfaces via a singular Bjorling representation formula, J. Geom. Phys. 57 (2007), no. 11, 2167-2177. https://doi.org/10.1016/j.geomphys.2007.04.006
  20. S. Lee, Spacelike surfaces of constant mean curvature 1 in de Sitter 3-space ${\mathbb{S}}^3_1$(1), Illinois J. Math. 49 (2005), no. 1, 63-98.
  21. S. Lee, Spacelike CMC 1 surfaces in de Sitter 3-spaces $S^3_1$(1) : their construction and some examples, Differ. Geom. Dyn. Syst. 7 (2005), 49-73.
  22. H. L. Liu and G. L. Liu, Weingarten rotation surfaces in 3-dimensional de Sitter space, J. Geom. 79 (2004), no. 1-2, 156-168. https://doi.org/10.1007/s00022-003-1567-4
  23. F. Mercuri and I. I. Onnis, On the Bjorling problem in a three-dimensional Lie group, Illinois J. Math. 53 (2009), no. 2, 431-440.
  24. J. Oprea, Differential Geometry and its Applications, Prentice Hall, 1997.
  25. J. Ramanathan, Complete spacelike hypersurfaces of constant mean curvature in de Sitter space, Indiana Univ. Math. J. 36 (1987), no. 2, 349-359. https://doi.org/10.1512/iumj.1987.36.36020
  26. W. Rossman, Mean curvature one surfaces in hyperbolic space, and their relationship to minimal surfaces in Euclidean space, J. Geom. Anal. 11 (2001), no. 4, 669-692. https://doi.org/10.1007/BF02930762
  27. R. Sa Earp and E. Toubiana, On the geometry of constant mean curvature one surfaces in hyperbolic space, Illinois J. Math. 45 (2001), no. 2, 371-401.
  28. M. Umehara and K. Yamada, A parametrization of the Weierstrass formulae and perturbation of complete minimal surfaces in $R^3$ into the hyperbolic 3-space, J. Reine Angew. Math. 432 (1992), 93-116.
  29. M. Umehara and K. Yamada, Complete surfaces of constant mean curvature 1 in the hyperbolic 3-space, Ann. of Math. (2) 137 (1993), no. 3, 611-638. https://doi.org/10.2307/2946533
  30. M. Umehara and K. Yamada, A duality on CMC-1 surfaces in hyperbolic space, and a hyperbolic analogue of the Osserman inequality, Tsukuba J. Math. 21 (1997), no. 1, 229-237. https://doi.org/10.21099/tkbjm/1496163174
  31. S.-D. Yang, Singular Bjorling formula for mean curvature one surfaces in de Sitter three-space, preprint.