References
- M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Phys. Rev. A 41 (1990), 6763-6771. https://doi.org/10.1103/PhysRevA.41.6763
- J. W. Barrett, J. F. Blowey, and H. Garcke, Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility, SIAM J. Numer. Anal. 37 (1999), no. 1, 286-318. https://doi.org/10.1137/S0036142997331669
- F. S. Bates and G. H. Fredrickson, Block copolymers-designer soft materials, Phys. Today. 37 (1999), 32-38.
- A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977), no. 138, 333-390. https://doi.org/10.1090/S0025-5718-1977-0431719-X
- J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267. https://doi.org/10.1063/1.1744102
- L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun. 108 (1998), 147-158. https://doi.org/10.1016/S0010-4655(97)00115-X
- R. Choksi, M. Maras, and J. F. Williams, 2D phase diagram for minimizers of a Cahn-Hilliard functional with long-range interactions, SIAM J. Appl. Dyn. Syst. 10 (2011), no. 4, 1344-1362. https://doi.org/10.1137/100784497
- R. Choksi, M. A. Peletier, and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional, SIAM J. Appl. Math. 69 (2009), no. 6, 1712-1738. https://doi.org/10.1137/080728809
- F. Drolet and G. H. Fredrickson, Combinatorial screening of complex block copolymer assembly with self-consistent field theory, Phys. Rev. Lett. 83 (1999), 4317-4320. https://doi.org/10.1103/PhysRevLett.83.4317
- Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal. 28 (1991), no. 5, 1310-1322. https://doi.org/10.1137/0728069
- D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, http://www.math.utah.edu/-eyre/research/methods/stable.ps (1998).
- D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, Computational and mathematical models of microstructural evolution (San Francisco, CA, 1998), 39-46, Mater. Res. Soc. Sympos. Proc., 529, MRS, Warrendale, PA, 1998.
- D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard Equation, Numer. Math. 87 (2001), no. 4, 675-699. https://doi.org/10.1007/PL00005429
- H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. Hughes, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 49-50, 4333-4352. https://doi.org/10.1016/j.cma.2008.05.003
- Z. Guan, C.Wang, and S. M.Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation, Numer. Math. 128 (2014), no. 2, 377-406. https://doi.org/10.1007/s00211-014-0608-2
- D. Jeong, J. Shin, Y. Li, Y. Choi, J. H. Jung, S. Lee, and J. S. Kim, Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers, Curr. Appl. Phys. 14 (2014), 1263-1272. https://doi.org/10.1016/j.cap.2014.06.016
- J. S. Kim, A numerical method for the Cahn-Hilliard equation with a variable mobility, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), no. 8, 1560-1571. https://doi.org/10.1016/j.cnsns.2006.02.010
- J. S. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys. 12 (2012), no. 3, 613-661. https://doi.org/10.4208/cicp.301110.040811a
- J. S. Kim and H. O. Bae, An unconditionally gradient stable adaptive mesh refinement for the Cahn-Hilliard equation, J. Korean Phys. Soc. 53 (2008), 672-679. https://doi.org/10.3938/jkps.53.672
- J. S. Kim, K. Kang, and J. S. Lowengrub, Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys. 193 (2004), no. 2, 511-543. https://doi.org/10.1016/j.jcp.2003.07.035
- Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Phys. D 84 (1995), no. 1-2, 31-39. https://doi.org/10.1016/0167-2789(95)00005-O
- T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromol. 19 (1986), 2621-2632. https://doi.org/10.1021/ma00164a028
- M. Pinna and A. V. Zvelindovsky, Large scale simulation of block copolymers with cell dynamics, Eur. Phys. J. B 85 (2012), 1-18. https://doi.org/10.1140/epjb/e2011-20818-1
- J. Qin, G. S. Khaira, Y. Su, G. P. Garner, M. Miskin, H. M. Jaeger, and J. J. de Pablo, Evolutionary pattern design for copolymer directed self-assembly, Soft Matter 9 (2013), 11467-11472. https://doi.org/10.1039/c3sm51971f
- J. Shin, Y. Choi, and J. S. Kim, An unconditionally stable numerical method for the viscous Cahn-Hilliard equation, Discret. Contin. Dyn. Syst. Ser. B 19 (2014), no. 6, 1737-1747. https://doi.org/10.3934/dcdsb.2014.19.1737
- U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid, Academic press, London, 2001.