• Title/Summary/Keyword: time-temperature control

Search Result 2,349, Processing Time 0.031 seconds

LBCC of Transient State for High Strength Steel in Hot Strip Mills (열연 고강도강의 비정상부 온도제어를 위한 LBCC 개발)

  • Park, Cheol-Jae;Yoon, Kang-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.382-387
    • /
    • 2011
  • In this paper, a LBCC (Latter Bank Cooling Control) for the high strength steel is proposed to obtain the desirable temperature and the property of the material along the longitudinal direction of the steel on the ROT (Run-Out Table) process. A cooling valve is modeled to analyze the response of the ROT banks. The control concept is derived from a field data, a valve model considering the valve response and a TTT (Time-Temperature Transformation) diagram. The proposed control is verified from the simulation results under the various carbon quantities. It is shown through the field test of the hot strip mill that the deviation of the CT (Coiling Temperature) is considerably decreased by the proposed temperature control.

A Prediction Method of Temperature Distribution on the Wafer for Real-Time Control in a Rapid Thermal Process System (실시간 제어를 위한 고속 열처리 공정에서 웨어퍼 온도 분포 추정 기법)

  • Sim, Yeong-Tae;Yi, Seok-Joo;Kim, Hagbae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.831-835
    • /
    • 2000
  • The uniformity of themperature on a wafer is a wafer is one the most important parameters to conterol the RTF(Rapid Thermal Process) with proper input signals. It is impossible to achieve the uniformity of temperature without the exact estimation of temperature ar all points on the wafer. There fore, it is difficult to understand the internal dynamics as well as the structural complexities of the RTP, which is aprimary obstacle to measure the distributed temperatures on the wafer accurately. Furthermore, it is also hard to accomplish desirable estimation because only a few pyrometers are available in the general equipments. In the paper, a thermal model based on the chamber grometry of the AST SHS200 RTP system is developed to effectively control the thermal uniformity on the wafer. First of all, the estimation method of one-point measurement is developed, which is properly extended to the case of multi-point measurements. This thermal model is validated through simulation and experiments. The proposed work can be utilized to building a run-by -run or a real-time control of the RTP.

  • PDF

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

Control Strategies of Both the Heater Temperature and the Inverter Output Voltage of a Single-Phase PWM Inverter Systems for Heat Treatment (열처리용 단상 PWM인버터시스템의 히터온도 및 인버터 출력전압 제어기법)

  • Yang, Si-Gyeong;Chun, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1047-1054
    • /
    • 2018
  • This paper proposed the strategies for controlling both the heater temperature and the output voltage of a single-phase inverter for the heat treatment. The single-phase inverter system for the heat treatment controls the heater temperature to its reference one, and also it limits the inverter output voltage to 60 V for safety. The stability may be deteriorated due to the large time constant difference between the heater temperature and inverter output voltage. In order to ensure the stability, a hysteresis on/off control approach for the heater temperature control is adapted, and both the open-loop and the closed-loop control strategies of the output voltage are suggested. The performances for the proposed strategies are demonstrated with the experiments.

A Study on Injection Characteristic using Active Temperature Control of Injection mold (사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구)

  • Cho, C.Y.;Sin, H.G.;Hong, N.P.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF

A Simulation of Temperature Control of Greenhouse with Hot-Water Heating System (온수난방시스템 온실의 온도제어 시뮬레이션)

  • 정태상;하종규;민영봉
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.152-163
    • /
    • 1999
  • It is required to analyze the controlled response of air temperature in greenhouse according to control techniques for precise control. In this study, a mathematical model was established for air heating of greenhouse with hot-water heating system The parameters of the model were decided by regression analysis using reference data measured at the greenhouse being heated In the simulation for the digital control of air temperature in the greenhouse, the mathematical model to evaluate the control performances was used. Tested control methods were ON-OFF contpol, p control, rl control and PID control. The mathematical model represented by inside air temperature ( T$_{i}$), hot-water temperature (T$_{w}$) in heating pipe and outside air temperature (T$_{o}$) was expressed as a following discrete time equation ; T$_{i}$($textsc{k}$+1)= 0.851.T$_{i}$($textsc{k}$)+0.055.T$_{w}$($textsc{k}$)+0.094.T$_{o}$($textsc{k}$) Control simulations for various control methods showed the settling time, the overshoot and the steady state nor as follows; infinite time, 3.5$0^{\circ}C$, 3.5$0^{\circ}C$ for ON-OFF control : 30min 2.37$^{\circ}C$, 0.51$^{\circ}C$ for P control; 21min, 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PI control; 18min 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PID control, respectively. PI and PID controls appeared to be optimal control methods. There was no effect of differential gain on the heating process but much effect of integral gain on it.on it.

  • PDF

A Study on the Development of Greenhouse Temperature Control System by Using Micro-computer (Micro-computer를 이용(利用)한 Greenhouse의 온도제어(溫度制御) System 개발(開發)에 관한 연구(硏究))

  • Suh, W.M.;Min, Y.B.;Yoon, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.134-142
    • /
    • 1990
  • This study was carried out for the development of greenhouse temperature control system by modifying an APPLE-II microcomputer attached with several interface systems. The interface systems are composed of 12 bit A/D converter, output port, multiplexer, time clock, etc. Under the operation of developed system, the greenhouse temperature was to be manipulated within the setting temperatures assumed to be appropriate for certain plant growth. The temperature control equimpents installed in the greenhouse are one-speed propeller type fan and two-phase electric heater, which are selectively started or stopped according to the control logic programmed in the control system. The results are summarized as follows : 1. The difference between two temperatures measured by the developed system and the self-recording thermometer calibrated with standard thermometer was less than $1^{\circ}C$. 2. When the temperature were measurd by 12 bit A/D converter and both electric heater and ventilation fan were controlled by developed ON/OFF logic, greenhouse temperature showed narrow fluctuation bands of less than $1^{\circ}C$ near the setting temperatures. 3. The temperature acquisition and control system developed in this study is expected to be applicable to environment control system such as greenhouse only by modifying the logic based on long term experimental data. 4. In order to reduce the measurement error and to increase the system control efficiency, it is recommended that continuous study should be carried out in the aspect of eliminating various systematic noises and improving the environmental control logic.

  • PDF

Optimal Control of Injection Molding Process by Using temperature Sensor (캐비티 온도센서를 이용한 최적 사출공정 제어)

  • Park, Cheon-Soo;Kang, Chul-Min
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.30-33
    • /
    • 2008
  • Injection Molding is the most effective process for mass production of plastic parts. The injection molding process is composed with several steps such as Filling, Packing, Holding, Cooling, Ejecting. Among them, filling and packing process should be considered carefully to improve accuracy of dimension, surface quality of plastic parts. Usually the quality above-mentioned is managed with weight of part after molding on the field. In this paper, a series of experiment for molding automotive front bumper was conducted with cavitity temperature sensor to optimize switch-over time(V-P switching), hot runner vale gate sequence time during filling and packing step for the purpose of uniform quality, weight at every molding. As a result, it was found that it is effective method to use temperature sensor in injection molding for quality control of plastic molding.

  • PDF

Design of Real Time Optimization Control System on Heating Furnace (가열로의 실시간 최적 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.633-635
    • /
    • 2009
  • It is a quite quality concerning to control temperature of single crystalline growth as it does when you get most of heat treating products. It is also important factor to control temperature when you make the $Al_2O_3$(single crystalline) used to artificial jewels, glass of watches, heat resistant transparent glasses. Thus, it is a major interest to get the proper temperature in accordance with the time process while you are making mixture of oxygen and hydrogen to have the right temperature. In this paper, we will study of electrical valve positioning system for the gas mixture to improve the quality of products.

  • PDF

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF