Journal of the Institute of Convergence Signal Processing
/
v.2
no.3
/
pp.39-44
/
2001
In frequency hopping spread spectrum(FHSS) communication systems, exact frequency synchronization is required due to the random hopping of carrier frequencies between transmitter and receiver even under harsh channel conditions. For synchronization of FHSS communications, multi-frequency hopping synchronization(MFHS) method has been used in which a small set of frequencies are repeatedly sent several times for long duration. But this long duration resulted in being easily detected by the unauthorized users as well as long duration of acquisition time. In this paper, motivated by these problems, an adaptive synchronization method(ASM) is proposed. ASM is technics to reduce the synchronization time where the number of synchronization frequencies and repetition numbers is adaptively changed (increased or decreased) according to the channel conditions. The performance analysis showed that the time duration of synchronization was reduced to 0.2sec, and the influence of jamming or interference was decreased to 46% in ASM.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.3A
/
pp.237-246
/
2007
Clock Synchronization is one of the most basic factors to be considered when we implement an indoor synchronization network for indoor positioning. In this paper, we present a new synchronization algorithm which does not employ time stamps in order to reduce the hardware complexity and data overhead. In addition to that, we describe an algorithm that is designed to compensate the frequency drift giving an serious impact on the synchronization performance. The performance evaluation of the proposed algorithm is achieved by investigating MTIE (Maximum Time Interval Error) values through simulations. In the simulations, the frequency drift values of the practical oscillators are used. From the simulation results, it is investigated that we can achieve the synchronization performance under 10 ns when we use 1 second synchronization interval with 1 ns resolution and TCXOs (Tmperature Compensated Cristal Oscillators) both in the master clock and the slave clock.
With the proliferation of wireless network and the advances of the embedded systems, the traditional distributed systems begin to include the wireless embedded systems. Clock synchronization in the distributed systems is one of the major issues that should be considered for diverse Purposes including synchronization, ordering, and consistency. Many clock synchronization algorithms have been proposed over the years. Since clock synchronization in wireless embedded systems should consider the low bandwidth of a network and the poor resources of a system, most traditional algorithms cannot be applied directly. We propose a clock synchronization algorithm in wireless embedded systems, extending IEEE 802.11 standard. The proposed algorithm can not only achieve high precision by loosening constraints and utilizing the characteristics of wireless broadcast but also provide continuous time synchronization by tolerating the message losses. In master/slave structure the master broadcasts the time information and the stave computes the clock skew and the drift to estimate the synchronized time of the master. The experiment results show that the achieved standard deviation by the Proposed scheme is within the bound of about 200 microseconds.
본 논문에서는 분산된 클록들을 주기적으로 동기화 시키는 분산 실시간 시스템에서 시간적 제약을 만족시키기 위한 정적/동적 시간 제약(timing constraint) 변환 기법을 제안한다. 전형적인 이산클록동기화(discrete clock synchronization) 알고리즘은 클록의 값을 순간적으로 조정하여 클록의 시간이 불연속적으로 진행한다. 이러한 시간상의 불연속성은 시간적 이벤트를 잃어버리거나 다시 발생시키는 오류를 범하게 한다.클록 시간의 불연속성을 피하기 위해 일반적으로 연속클록동기화(continuous clock synchronization) 기법이 제안되고 있지만 소프트웨어적으로 구현되면 많은 오버헤드를 유발시키는 문제점이 있다. 본 논문에서는 시간적 제약을 동적으로 변환시키는 DCT (Dynamic Constraint Transformation) 기법을 제안하였으며, 이를 통해 기존의 이산클록동기화 알고리즘을 수정하지 않고서도 클록 시간의 불연속성에 의한 문제점들을 해결할 수 있도록 하였다. 아울러 DCT에 의해 이산클록동기화 하에서 생성된 태스크 스케쥴이 연속클록동기화에 의해 생성된 스케쥴과 동일함을 증명하여 DCT의 동작이 이론적으로 정확함을 증명하였다.또한 분산 실시간 시스템에서 지역 클록(local clock)이 기준 클록과 완벽하게 일치하지 않아서 발생하는 스케쥴링상의 문제점을 다루었다. 이를 위해 먼저 두 가지의 스케쥴링 가능성, 지역적 스케쥴링 가능성(local schedulability)과 전역적 스케쥴링 가능성(global schedulability)을 정의하고, 이를 위해 시간적 제약을 정적으로 변환시키는 SCT (Static Constraint Transformation) 기법을 제안하였다. SCT를 통해 지역적으로 스케쥴링 가능한 태스크는 전역적으로 스케쥴링이 가능하므로, 단지 지역적 스케쥴링 가능성만을 검사하면 스케쥴링 문제를 해결할 수 있도록 하였고 이를 수학적으로 증명하였다.Abstract In this paper, we present static and dynamic constraint transformation techniques for ensuring timing requirements in a distributed real-time system possessing periodically synchronized distributed local clocks. Traditional discrete clock synchronization algorithms that adjust local clocks instantaneously yield time discontinuities. Such time discontinuities lead to the loss or the gain of events, thus raising serious run-time faults.While continuous clock synchronization is generally suggested to avoid the time discontinuity problem, it incurs too much run-time overhead to be implemented in software. We propose a dynamic constraint transformation (DCT) technique which can solve the problem without modifying discrete clock synchronization algorithms. We formally prove the correctness of the DCT by showing that the DCT with discrete clock synchronization generates the same task schedule as the continuous clock synchronization.We also investigate schedulability problems that arise when imperfect local clocks are used in distributed real-time systems. We first define two notions of schedulability, global schedulability and local schedulability, and then present a static constraint transformation (SCT) technique. The SCT ensures that it is sufficient to check the schedulability of a task locally in a node with a local clock, since the global schedulability of the task is derived from its local schedulability through SCT. We formally prove the correctness of SCT.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39B
no.5
/
pp.296-303
/
2014
Reference Broadcast Synchronization (RBS) is one of the most prominent synchronization protocols in wireless sensor nework. Given that the broadcasting medium is available, RBS can give very high accuracy of synchronization. However, RBS uses instantaneous synchronization and results in time discontinuity, which might cause serious faults in the distributed system. Also, RBS lacks packet loss tolerance, which brings about degraded performance in severe conditions of wireless channel. In this paper, the problem of time discontinuity in RBS is pointed out and the effect of packet loss on the performance of RBS is examined. Then, a continuous synchronization and a packet loss tolerance mechanism for RBS are proposed, and the result is verified through simulations.
Panoramic image is one of the technologies that are commonly used today. However, technical difficulties still exist in panoramic video production. Without a special camera such as a 360-degree camera, making panoramic video becomes more difficult. In order to make a panoramic video, it is necessary to synchronize the timeline of multiple videos shot at multiple locations. However, the timeline synchronization method using the internal clock of the camera may cause an error due to the difference of the internal hardware. In order to solve this problem, timeline synchronization between multiple videos using visual information or auditory information has been studied. However, there is a problem in accuracy and processing time when using video information, and there is a problem in that, when using audio information, there is no synchronization when there is sensitivity to noise or there is no melody. Therefore, in this paper, we propose a timeline synchronization method between multiple video using audio waveform. It shows higher synchronization accuracy and temporal efficiency than the video information based time synchronization method.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2005.11a
/
pp.177-178
/
2005
Wireless 1394 over IEEE802.15.3 must allow a data reserved for delivery over a wired 1394 network to be delivered over an IEEE802.15.3 wireless network through bridging IEEE 1394 to IEEE802.15.3. Isochronous transfers on the 1394 bus guarantee timely delivery of data. Specifically, isochronous transfers are scheduled by the bus so that they occur once every $125\;{\mu}s$ and require clock time synchronization to complete the real-time data transfer. IEEE1394.1 and Protocol Adaptation Layer for IEEE1394 over IEEE802.15.3 specify clock time synchronization for a wired 1394 bus network to a wired 1394 bus network and wireless 1394 nodes, which are IEEE802.15.3 nodes handling 1394 applications, over IEEE802.15.3. Thus, the clock time synchronizations are just defined within a homogeneous network environment like IEEE1394 or IEEE802.15.3 until now. This paper proposes new clock time synchronization method for wireless 1394 heterogeneous networks between 1394 and 802.15.3. If new method is adopted for various wireless 1394 products, consumer electronics devices such as DTV and Set-top Box or PC devices on a 1394 bus network can transmit real time data to the AV devices on the other 1394 bus in a different place via IEEE 802.15.3.
Nagayama, T.;Sim, S.H.;Miyamori, Y.;Spencer, B.F. Jr.
Smart Structures and Systems
/
v.3
no.3
/
pp.299-320
/
2007
Smart sensors densely distributed over structures can provide rich information for structural monitoring using their onboard wireless communication and computational capabilities. However, issues such as time synchronization error, data loss, and dealing with large amounts of harvested data have limited the implementation of full-fledged systems. Limited network resources (e.g. battery power, storage space, bandwidth, etc.) make these issues quite challenging. This paper first investigates the effects of time synchronization error and data loss, aiming to clarify requirements on synchronization accuracy and communication reliability in SHM applications. Coordinated computing is then examined as a way to manage large amounts of data.
In this paper, efficient time synchronization scheme for OFDM based WLAN system and its performance simulation results are presented. Assuming AGC and packet detection is done within 7 short training symbols. This scheme consists of coarse and fine estimation, and exhibits robustness over fading and AWGN channel. The presented synchronization scheme achieves the success rate of about 96% over the SNR of 5 dB.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.10
/
pp.373-380
/
2022
This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.