• Title/Summary/Keyword: time-synchronization

Search Result 1,153, Processing Time 0.027 seconds

Development of a Real-time OS Based Control System for Laparoscopic Surgery Robot (복강경 수술로봇을 위한 실시간 운영체제 기반 제어 시스템의 개발)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Kim, Yun-Ho;Lee, Duk-Hee;Jo, Yung-Ho;Choi, Jae-Seoon;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.32-39
    • /
    • 2008
  • This paper reports on a realtime OS based master-slave configuration robot control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. Surgery robot system requires control system that can process large volume information such as medical image data and video signal from endoscope in real-time manner, as well as precisely control the robot with high reliability. To meet the complex requirements, the use of high-level real-time OS (Operating System) in surgery robot controller is a must, which is as common as in many of modem robot controllers that adopt real-time OS as a base system software on which specific functional modules are implemened for more reliable and stable system. The control system consists of joint controllers, host controllers, and user interface units. The robot features a compact slave robot with 5 DOF (Degree-Of-Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously. Each master, slave and Gill (Graphical User Interface) host runs a dedicated RTOS (Real-time OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) on which functional modules such as motion control, communication, video signal integration and etc, are implemented, and all the hosts are in a gigabit Ethernet network for inter-host communication. Each master and slave controller set has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication with the joint controllers. Total 4 pairs of the master/slave manipulators as current are controlled by one host controller. The system showed satisfactory performance in both position control precision and master-slave motion synchronization in both bench test and animal experiment, and is now under further development for better safety and control fidelity for clinically applicable prototype.

Measurement Delay Error Compensation for GPS/INS Integrated System (GPS/INS 통합시스템의 측정치 시간지연오차 보상)

  • Lyou Joon;Lim You-Chol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The INS(Inertial Navigation System) provides high rate position, velocity and attitude data with good short-term stability while the GPS(Global Position System) provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to Provide highly accurate navigation Performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the loosely-coupled and the tightly-coupled GPS/INS integration systems. Linearized error models for the position and velocity matching GPS/INS integrated systems are Int derived by linearizing with respect to its time-delay and augmenting the delay-state into the conventional state equations for each case. And then separate bias Kalman Inter is introduced to estimate the time-delay during only initial navigation stage. The simulation results show that the present method is effective enough resulting in considerably less position error.

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

Effect of Administration of Gonadotropin and Scheduled Fixed-time Insemination on Onset of Estrus and Reproductive Performance in Lactating Sows (포유중인 모돈에서 성선자극호르몬 투여 및 예정시각 인공수정이 발정재귀 및 번식성적에 미치는 영향)

  • Ryu, J.W.;Cho, K.H.;Son, J.H.;Kim, Y.S.;Chung, K.H.;Kim, I.C.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.451-458
    • /
    • 2007
  • This study was to investigate the effectiveness of pre-weaning injection of gonadotropin and scheduled fixed-time insemination on sow fertility. Sows were randomly assigned to receive gonadotropin 2 days before weaning, 1 day after weaning or none as control. In gonadotropin treated groups, half of sows were inseminated twice at 24 and 36 hours after onset estrus and half of sows were inseminated twice at scheduled fixed-time. Weaning to onset of estrus was the shortest in lactating sows injected with gonadotropin prior to weaning. Liter size was significantly higher in AI groups after detection of estrus, compared to fixed-time AI group. Results of these experiments indicated that injection of gonadotropin in lactating sows could initiate the final follicular development, and has potential to enhance the reintegration of estrus. Further researches are needed to define the relationship between reduced interval of wean to onset estrus and enhanced fertility in lactating sows.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

An Asynchronous UWB Positioning Scheme with Low Complexity and Low Power Consumption (낮은 복잡도와 전력 소모의 비동기식 UWB 무선측위 기법)

  • Kim, Jae-Woon;Park, Young-Jin;Lee, Soon-Woo;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1098-1105
    • /
    • 2009
  • In this paper, we propose an asynchronous UWB (Ultra Wide Band) Positioning scheme that can provide precise positioning performance with low complexity and low power consumption. We also present the residual test to improve the positioning performance in multipath channels having heavy NLoS (Non-Line of Sight) components. As compared to conventional ToA (Time of Arrival) positioning scheme that requires round-trip transmissions as many as the number of beacons, the proposed UWB positioning scheme effectively decrease power consumption and processing delay since a single round-trip transmission is only required. Also, as compared to conventional TDoA (Time Difference of Arrival) positioning scheme requiring precise synchronization among the beacons, asynchronous nature of the proposed scheme achieves very low system complexity. Through simulations in LoS (Line of Sight) channel models, we observe that the proposed scheme requires low system complexity, low power consumption, while providing positioning performance of almost the same accuracy as the conventional ToA and TDoA positioning schemes. In addition, the proposed scheme by employing the residual test achieves accurate positioning performance even in multipath channels having heavy NLoS components.

IQ Unbalance Compensation for OPDM Based Wireless LANs (무선랜 시스템에서의 IQ 부정합 보상 기법 연구)

  • Kim, Ji-Ho;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.905-912
    • /
    • 2007
  • This paper proposes an efficient estimation and compensation scheme of IQ imbalance for OFDM-based WLAN systems in the presence of symbol timing error. Since the conventional scheme assumes perfect time synchronization, the criterion of the scheme used to derive the estimation of IQ imbalance is inadequate in the presence of the symbol timing error and the system performance is seriously degraded. New criterion and compensation scheme considering the effect of symbol timing error are proposed. With the proposed scheme, the IQ imbalance can be almost perfectly eliminated in the presence of symbol timing error. The bit error rate performance of the proposed scheme is evaluated by the simulation. In case of 54 Mbps transmission mode in IEEE 802.11a system, the proposed scheme achieves a SNR gain of 4.3dB at $BER=2{\cdot}10^{-3}$. The proposed compensation algorithm of IQ imbalance is implemented using Verilog HDL and verified. The proposed IQ imbalance compensator is composed of 74K logic gates and 6K bits memory from the synthesis result using 0.18um CMOS technology.

A Strategy to maintain Cache Consistency in Mobile Computing Environments using the Asynchronous Broadcasting (비동기적 방송을 사용하는 이동 컴퓨팅 환경에서 캐쉬 일관성 유지 정책)

  • Kim, Dae-Ong;Park, Seong-Bae;Hwang, Bu-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2763-2775
    • /
    • 1998
  • In mobile computing environments, to efficiently use the narrow bandwidth of wireless networks a mobile host caches the data that are frequently accessed. But, because the cached data can be inconsistent with the data n a server due to the host mobility and the disconnection from a server, the usefullness of cached data may be losted. The traditional methods emphasize on the cache consistency and assume that broadcasting times are synchronized at all mobile supprot stations. In this paper, we propose a strategy to maintain cache consistency, which resolves the problems that be caused by the migration of mobile host. The proposed strategy has asynchronous broadcasting time and reduces the communication overhead caused by the synchronization. Also, by preventing the unnecessary messages transmitting from the mobile support station to a mobile host, this strategy can reduce the communication cost and use the narrow bandwidth of wireless networks efficiently.

  • PDF

Study on Common Phase Offset Tracking Scheme for Single Carrier System with Frequency Domain Equalization (단일 반송파 주파수 영역 등화 시스템을 위한 공통 위상 추적 기법 연구)

  • Kim, Young-Je;Park, Jong-Hun;Cho, Jung-Il;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.641-648
    • /
    • 2011
  • Frequency domain equalization is the most promising technology that has relatively low complexity in multipath channel. A frame of single carrier system with frequency domain equalization (SC-FDE) has cyclic prefix to mitigate effect of delay spread. After synchronization and equalization procedure on the SC-FDE system, common phase offset (CPO) that can introduce performance degradation caused by phase mismatch between transmitter and receiver oscillators is remained. In this paper, common phase offset tracking in frequency domain is proposed. To track CPO, constant amplitude zero autocorrelation code sequence as training sequence is adopted. By using numerical results, performance of mean square error is evaluated. The results show that MSE of CPO has similar performance compare to the time-domain estimation and there is no need of domain conversion.