• Title/Summary/Keyword: time-switching

Search Result 1,904, Processing Time 0.051 seconds

Digital Controller for DC-DC Converters (DC-DC 컨버터를 위한 디지털 방식의 컨트롤러 회로)

  • Hong, Wanki;Kim, Kitae;Kim, Insuck;Roh, Jeongjin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.39-46
    • /
    • 2005
  • A DC-DC converter with digital controller is realized. the digital controller has several advantages such as robustness, fast design time, and high flexibility. however, since the DC-DC output voltage is analog, an analog-to-digital conversion scheme is always essential in all digital controllers. A simple and efficient delta-sigma modulator is used as a conversion scheme in out implementation. The measurement results show good voltage regulation

A Study on New Harmonic Elimination Method Using Walsh Series (왈쉬급수를 사용한 새로운 고조파 제거 방법에 관한 연구)

  • 박민호;안두수;원충연;이해기;이명규;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.263-272
    • /
    • 1990
  • In the variable speed driving system of a three phase induction motor controlled by a PWM inverter, the output terminal contains considerable amount of harmonic components of the voltage waveform due to the switching action of semiconductor devices, causing torque ripples, acoustic noise and oscillation of the motor. This paper describes a new algorithm which eliminates the harmonics and controls the fundamental voltage in three phase PWM inverter output waveform. The new algorithm utilizes the technique of particular harmonics elimination (PHE) by walsh series in three phase PWM inverter output waveform. A microprocessor (8086 CPU)-controlled three phase induction motor system is described to realize this algorithm. The system is designed for 3 phase output voltage in the 1-60Hz interval where 5th and 7th harmonics, and 5th, 7th, 11th, and 13th harmonics are eliminated. Also, the fundamental wave amplitude is designed to be proportional to the output frequency. The performance of the proposed method shows sufficient elimination of the harmonics and also reduction of computation time which determines switching pattern. The proposed PWM pattern by Walsh series, is effective not only to induction motors but also to other electromagetic equipments such as voltage regulators and UPS.

Data Coding Scheme to Reduce Power Consumption and EMI in LCD Driving Systems (LCD 구동 시스템에서 전력 소비 및 전자기 장애를 줄이기 위한 데이타 코딩 방법)

  • Choi, Chul-Ho;Choi, Myung-Ryul
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.6
    • /
    • pp.628-634
    • /
    • 2000
  • We propose a data coding scheme for reducing' power consumption and ElVII in transmitting a sequence of data from LCD controller to LCD driver. The proposed coding scheme makes use of reducing data transitions in general text image of PC. It can be implemented with a little hardware and applied to the real-time applications of LCD driving system. We have executed computer simulations of the proposed coding scheme and compared the results of the proposed scheme with those produced by the existing coding schemes. The proposed coding scheme, compared to the existing ones, reduces the switching activity significantly in both of text and picture images.

  • PDF

Data Analysis and Design Method for automatically generating Office Data of Switching System (교환 시스템의 국 데이터 자동 생성을 위한 데이터 분석 및 설계 방법)

  • Chung, Chang-Shin;Jung, Soon-Key
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4B
    • /
    • pp.316-322
    • /
    • 2003
  • The office data for telecommunication switching systems included system configuration data, processing data, maintenance and administration data on a very large scale. Those data are dependent on functions of the system and the place of system installation. The effect of errors of office data is very serious. In order to reduce time and effort on the system development phase and to enhance system reliability, in this paper we proposed a data analysis and design method for automatically generating office data that are dependent on installation capability and system configuration of the swiching office.

Characteristics Analysis of a Forward Converter by Finite Element Method and State Variables Equation (유한요소법과 상태방정식을 이용한 포워드 컨버터의 동작 특성 해석)

  • Park, Seong-Jin;Gwon, Byeong-Il;Park, Seung-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.467-475
    • /
    • 1999
  • This paper presents an analysis method of a forward converter, using both the finite element method considering the external circuit and a state variables equation. The converter operates at 50kHz and its one period is divided into two modes for the simplicity of the analysis. In the first mode, the switching transistor turns on and an input power is transferred into the load by the electromagnetic conversion action of a ferrite transformer. In the second mode, the switching transistor turns off and the stored energy in an inductor is delivered to the load, and the transformer core is demagnetized by the reset winding current. In this paper, time-stepping finite element method taking into account the on-state electrical circuit of the converter in used to analyze both the electrical circuit and electromagnetic field of the magnetic device during the first mode and the demagnetization period of the transformer core. Then a state variables equation for the circuit which the inductor current flows is constituted and solved during the second mode. As a result, the simulation results have been good agreement with the results obtained form experiment.

  • PDF

An Active Clamp High Step-Up Boost Converter with a Coupled Inductor

  • Luo, Quanming;Zhang, Yang;Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • An active clamp high step-up boost converter with a coupled inductor is proposed in this paper. In the proposed strategy, a coupled inductor is adopted to achieve a high voltage gain. The clamp circuit is included to achieve the zero-voltage-switching (ZVS) condition for both the main and clamp switches. A rectifier composed of a capacitor and a diode is added to reduce the voltage stress of the output rectifier diode. As a result, diodes with a low reverse-recovery time and forward voltage-drop can be utilized. Since the voltage stresses of the main and clamp switches are far below the output voltage, low-voltage-rated MOSFETs can be adopted to reduce conduction losses. Moreover, the reverse-recovery losses of the diodes are reduced due to the inherent leakage inductance of the coupled inductor. Therefore, high efficiency can be expected. Firstly, the derivation of the proposed converter is given and the operation analysis is described. Then, a steady-state performance analysis of the proposed converter is analyzed in detail. Finally, a 250 W prototype is built to verify the analysis. The measured maximum efficiency of the prototype is 95%.

Phase Locked Loop based Pulse Density Modulation Scheme for the Power Control of Induction Heating Applications

  • Nagarajan, Booma;Sathi, Rama Reddy
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.65-77
    • /
    • 2015
  • Resonant converters are well suited for induction heating (IH) applications due to their advantages such as efficiency and power density. The control systems of these appliances should provide smooth and wide power control with fewer losses. In this paper, a simple phase locked loop (PLL) based variable duty cycle (VDC) pulse density modulation (PDM) power control scheme for use in class-D inverters for IH loads is proposed. This VDC PDM control method provides a wide power control range. This control scheme also achieves stable and efficient Zero-Voltage-Switching (ZVS) operation over a wide load range. Analysis and modeling of an IH load is done to perform a time domain simulation. The design and output power analysis of a class-D inverter are done for both the conventional pulse width modulation (PWM) and the proposed PLL based VDC PDM methods. The control principles of the proposed method are described in detail. The validity of the proposed control scheme is verified through MATLAB simulations. The PLL loop maintains operation closer to the resonant frequency irrespective of variations in the load parameters. The proposed control scheme provides a linear output power variation to simplify the control logic. A prototype of the class-D inverter system is implemented to validate the simulation results.

Simplified PWM Strategy for Neutral-Point-Clamped (NPC) Three-Level Converter

  • Ye, Zongbin;Xu, Yiming;Li, Fei;Deng, Xianming;Zhang, Yuanzheng
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • A novel simplified pulse width modulation(PWM) strategy for neutral point clamped (NPC) three-level converter is proposed in this paper.The direct output voltage modulation is applied to reduce the calculation time. Based on this strategy, several optimized control methods are proposed. The neutral point potential balancing algorithm is discussed and a fine neutral point potential balancing scheme is introduced. Moreover, the minimum pulse width compensation and switching losses reduction can be easily achieved using this modulation strategy. This strategy also gains good results even with the unequal DC link capacitor. The modulation principle is studied in detail and the validity of this simplified PWM strategy is experimentally verified in this paper. The experiment results indicated that the proposed PWM strategy has excellent performance, and the neutral point potential can be balanced well with unequal DC link captaincies.

A PC-based instrumental system for fast measurement and analysis of power losses in DC-DC converter (DC-DC 컨버터의 고속 손실측정과 분석을 위한 PC 기반 계측시스템)

  • 안태영;주정규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.569-575
    • /
    • 2003
  • This paper present a new fully-automated PC-based instrumental system that could quickly measure and analyze the efficiency of switching power supplies for the entire operating range. In the proposed system, we applied an Indirect method for high-voltage low-current measurements and a direct method for low-voltage high-current measurements, in order to obtain a high accuracy with minimum equipment requirement. Compared to the conventional methods, the newly proposed system offers more accurate and much faster real-time assessment of the efficiency with minimum measurement error. The performance and accuracy of the proposed system are verified using a 50 W switching power supply intended for telecommunication applications.

Characteristic Comparison between PI and Hysteresis Voltage Control of High Voltage Unidirectional Inverter for Piezoelectric Load using FPGA (FPGA를 이용한 피에조 부하 구동용 고전압 단방향 인버터의 PI 및 히스테리시스 전압 제어 특성 비교)

  • Kim, Ki-Seok;Cho, Yong-Ho;Kim, Hyeong-Seop;Kang, Tae-Sam;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.48-54
    • /
    • 2017
  • In this paper, hysteresis voltage control method is proposed to an unidirectional inverter control for piezoelectric load. Piezoelectric load has electrically RC characteristic, and is driven by the inverter to control the output voltage waveform. When controling the output waveform by PI control, appropriate gains need to be selected. However, hysteresis control may minimize the output distortion because it has maximum proportional gain. In addition, Hysteresis control algorithm has simple structure to realize and the response is fast. Although the switching frequency of the inverter by hysteresis control varies, the switching frequency for the piezoelectric load is lower than that by PI control for equivalent performance. In particular, on implementing the algorithm using FPGA, the algorithm can be implemented in fewer pabrics and the processing time can be reduced. The superiority of the proposed hysteresis voltage control was proved for piezoelectric load through simulation and experiment.