• Title/Summary/Keyword: time-switching

Search Result 1,904, Processing Time 0.027 seconds

Enhancement of the Speed Response of PMSM Sensorless Control Using A New Adaptive Sliding Mode Observer (새로운 적응 슬라이딩 모드 관측기를 이용한 PMSM 센서리스 속도 응답특성 향상)

  • Kim, Hong-Ryel;Son, Ju-Beom;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.160-167
    • /
    • 2010
  • This paper proposes an adaptive sliding mode observer (SMO), which adds the estimation function of the stator resistance to a new sliding mode observer for the robust sensorless control of permanent magnet synchronous motor (PMSM) with variable parameters. To reduce the chattering problem commonly found in the conventional sliding mode observer where the low-pass filter and additional position compensation of the rotor are used, the sigmoid function is used for the control of a switching function in this research. With the estimation of the stator resistance, the proposed observer can improve the control performance by reducing the estimation error of the motor's speed. Note that the stator resistance is varying with the ambient temperature and becomes an error source for the sensorless control of PMSM. The new sliding mode observer has better efficiency than the conventional adaptive sliding mode observer by reducing the time consuming integral calculations. The stability of the proposed adaptive sliding mode observer is verified by the Lyapunov function in determining the observer gains, and the effectiveness of the observer is demonstrated by simulations and experiments.

Design of Charge Pump Circuit for Floating Gate Power Supply of Intelligent Power Module (Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계)

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.135-144
    • /
    • 2008
  • A bootstrap circuit is widely used for the floating gate power supply of Intelligent power module (IPM). A bootstrap circuit is simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. And the value of the bootstrap capacitor should be increased as the switching frequency decreases. A charge pump circuit can be used to overcome the problems. This paper deals with an analysis and design of a charge pump circuit for the floating gate power supply of an IPM. The simulation and experiment are carried out for an induction motor drive system. The results well verifies the validity of the proposed circuit and design method.

Evaluation of Diagnosis-based Control Strategy for NH4-N and NOX-N Removal of a Full-scale Wastewater Treatment Process (하수처리시설의 질산화 진단기반 제어 방법의 개발 및 실규모 플랜트 적용을 통한 평가)

  • Kim, Yejin;Kim, Hyosoo
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.447-456
    • /
    • 2018
  • In this research, the target process was a modified type of a conventional aeration tank with four different influent feeding points and alternated aeration to obtain nitrogen removal. For more accurate switching of influent feeding, the process was operated under a designed control strategy based on monitoring of $NH_4-N$ and $NO_X-N$ concentrations in the tank. However, the strategy did have some limitations. For example, it was not sensitive to detecting the end of each reaction when losing the balance between nitrification and denitrification of each opposite part of biological tank. To overcome the limitations of the existing control strategy, a diagnosis-based control strategy was suggested in this research using the diagnosis results classified as normal (N), ammonia accumulation (AA) and nitrate accumulation (NA). Using the pre-designed rules for control actions, the aeration and volume of the aerated part of the reactor could be increased or decreased at a fixed mode time. In simulations of the suggested diagnosis-based control strategy, the $NH_4-N$ and $NO_X-N$ removal rates in the reactor were maintained at higher levels than those of the existing control strategy.

Development of Single Phase PWM Converter for AC Traction System (교류 철도 차량 시스템용 단상 PWM Converter 개발)

  • Min, S.S.;Cha, J.D.;Hong, S.W.;Kim, S.W.;Park, Y.C.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.505-508
    • /
    • 1994
  • This paper describes an implementation of a single phase PWM ac/dc converter whose control scheme can be directly applied to the rectification of ac traction system. Power circuit using self-commutated switching devices(GTO) provides input power factor correction with dc voltage regulation. Effective compensation of load variations and line disturbance can be accomplished by real time instantaneous control of ac input current and dc link voltage using 32 bit floating point DSP. Parallel operation of two converters reduces the input line current ripple. Experimental results of the two parallel converter system are shown in the 20KW range for the verification of the system.

  • PDF

Spark Framework Based on a Heterogenous Pipeline Computing with OpenCL (OpenCL을 활용한 이기종 파이프라인 컴퓨팅 기반 Spark 프레임워크)

  • Kim, Daehee;Park, Neungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.270-276
    • /
    • 2018
  • Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

The Influence on Traction Return Current by Pantograph Detachment Frequency of High-speed Train (고속철도차량의 이선빈도가 귀선전류에 미치는 영향)

  • Lee, Sung-Gyen;Cho, Young-Maan;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.8-13
    • /
    • 2014
  • Currently it is major problem of electric railway with increasing drive speed such as the arc generated by the pantograph detachment and the distortion current in the motor-block high speed switching. When physical contact between the pantograph and the catenary line is separated, the pantograph detachment arcing occurs and it makes up the conductive noise to the return feeder. We made the EMTP modeling of the railway traction system and the pantograph arc by circuit elements and switches. The influence of pantograph detachment frequency is investigated by changing some frequencies. The over-current occurs in each detachment and it oscillates some time at beginning and stabilizes gradually. The magnitude of over-current is decided by instantaneous value of existing traction return current. If the detachment occurs at a point of peak value or distortion current, the over-current will be more harmful to the power systems connected with the return feeder and will become to arise with increasing detachment frequency.

A Study on a Control Method for Small BLDC Motor Sensorless Drive with the Single Phase BEMF and the Neutral Point (소형 BLDC 전동기 센서리스 드라이브의 단상 역기전력과 중성점을 이용한 제어기법 연구)

  • Jo, June-Woo;Hwang, Don-Ha;Hwang, Young-Gi;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.1-7
    • /
    • 2014
  • Brushless Direct Current(BLDC) Motor is essential to measure a rotor position because of that this motor type needs to synchronize the rotor's position and changeover phase current instead of a brush and commutator used on the existing dc motor. Recently, many researches have studied on sensorless control drive for BLDC motor. The conventional control methods are a compensation value dq, Kalman filter, Fuzzy logic, Neurons neural network, and the like. These methods has difficulties of detecting BEMF accurately at low speed because of low BEMF voltage and switching noise. And also, the operation is long and complex. So, it is required a high-performance microprocessor. Therefore, it is not suitable for a small BLDC motor sensorless drive. This paper presents control methods suitable for economic small BLDC motor sensorless drive which are an improved design of the BEMF detection circuit, simplifying a complex algorithm and computation time reduction. The improved motor sensorless drive is verified stability and validity through being designed, manufactured and analyzed.

An Analysis of the Ground Surface Potential Rise and Hazardous Voltages Caused by Impulse Currents (임펄스전류에 의한 대지표면전위상승 및 위험전압의 분석)

  • Lee, Bok-Hee;Lee, Kyu-Sun;Choi, Jong-Hyuk;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.117-123
    • /
    • 2011
  • Lightning and switching surges propagating through the grounding conductors lead to transient overvoltages, and electronic circuits in information technology systems are very susceptible to damage or malfunction from the electrical surges. Surge damages or malfunctions of electrical and electronic equipment may be caused by potential rises. To solve these problems, it is very important to evaluate the ground surface potential rises and hazardous voltages such as touch and step voltages at or near the grounding systems energized by electrical surges. In this paper, the performance of grounding systems against the surge current containing high frequency components on the basis of the actual-sized tests is presented. The ground surface potential rises and hazardous voltages depending on impulse currents for vertical or horizontal grounding electrodes are measured and analyzed. Also the touch and step voltages caused by the impulse currents are investigated. As a result, the ground surface potential rises, the touch and step voltages near the grounding electrodes are raised and the conventional grounding impedances are increased as the front time of the injected impulse currents is getting faster.

Physical Layer Secrecy Performance of RF-EH Networks with Multiple Eavesdroppers

  • Truong, Tien-Vu;Vo, Nhan-Van;Ha, Dac-Binh;Tran, Duc-Dung
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • In this study, we investigate the physical layer secrecy performance of RF energy harvesting (EH) networks over Rayleigh fading channels. The RF-EH system considered here consists of one power transfer station, one source, one destination, and multiple passive eavesdroppers. The source harvests energy from the power transfer station and transmits the information to the destination by using a time switching-based relaying protocol. The eavesdroppers try to extract the transmitted information without an active attack. By using the statistical characteristics of the signal-to-noise ratio (SNR), the exact closed-form expressions of the existence probability of the secrecy capacity and the secrecy outage probability are derived. Further, we analyze the secrecy performance of the system with respect to various system parameters, such as the location of the system elements and the number of eavesdroppers. Finally, the equivalent Monte Carlo simulation results are provided to confirm the correctness of our calculations.