• 제목/요약/키워드: time-series prediction

검색결과 912건 처리시간 0.028초

가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측 (A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function)

  • 김현진;정연승
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.123-128
    • /
    • 2019
  • 본 논문에서는 RCNN (recurrent convolution neural network) 계층 모델을 채택한 인공 지능에 기반을 둔 주가 예측을 제안한다. LSTM (long-term memory model) 기반 신경망은 시계열 데이터의 예측에 사용된다. 다른 한편, 컨볼루션 신경망은 데이터 필터링, 평균화 및 데이터 확장을 제공한다. 제안된 주가 예측에서는 위에서 언급 한 장점들을 RCNN 모델에서 결합하여 적용함으로써 다음날의 주가 종가를 예측한다. 그리고 최근의 시계열의 데이터를 강조하기 위해 커스텀 가중치 손실 함수가 채택되었다. 또한 시장의 상황을 반영하기 위해 주가 인덱스에 관련된 데이터를 입력으로 포함하였다. 제안된 주가 예측 방식은 실제 주가를 대상으로 한 실험에서 3.19%로 테스트 오차를 줄였으며, 다른 방법보다 약 19%의 성능 향상을 거둘 수 있었다.

기온 데이터를 반영한 전력수요 예측 딥러닝 모델 (Electric Power Demand Prediction Using Deep Learning Model with Temperature Data)

  • 윤협상;정석봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.307-314
    • /
    • 2022
  • 최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.

CNN-LSTM Coupled Model for Prediction of Waterworks Operation Data

  • Cao, Kerang;Kim, Hangyung;Hwang, Chulhyun;Jung, Hoekyung
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1508-1520
    • /
    • 2018
  • In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

TDSVM을 이용한 하천수 취수량 예측 (Prediction on the amount of river water use using support vector machine with time series decomposition)

  • 최서혜;권현한;박문형
    • 한국수자원학회논문집
    • /
    • 제52권12호
    • /
    • pp.1075-1086
    • /
    • 2019
  • 최근 기후 온난화의 발생과 이상기후의 발생빈도가 증가함에 따라 강수량, 하천유량과 같은 수문학적 요소의 예측이 복잡해지고 있으며 물부족 발생 위험도 증가하고 있다. 따라서 본 연구에서는 중단기 하천 취수량을 예측하기 위한 모델을 개발하고자 하였다. 입력인자를 선정하기 위해 취수량과 기상인자들 간의 상관성분석을 수행한 결과 온도가 가장 영향이 큰 것으로 나타났다. 또한 취수량은 시계열에 따른 증가 경향과 계절적 특성이 뚜렷하게 나타나므로 시계열분해기법을 이용하여 전처리를 수행하고 잔차에 대해 서포트 벡터 머신(SVM)을 적용하여 취수량 예측 모델을 개발하였다. 이 모델은 평균적으로 4.1%의 오차율을 나타내며, 전처리를 하지 않은 SVM 모델에 비해 높은 정확도를 나타냈다. 특히, 1~2달에 대해 중단기 예측을 수행하였을 때 더 유리한 결과를 나타냈다. 본 연구에서 개발된 취수량 예측모델은 수자원의 지속가능하고 효율적인 관리를 위해 하천수 사용허가, 수질관리, 가뭄 대책 마련에 활용이 가능할 것으로 예상된다.

Movie Box-office Prediction using Deep Learning and Feature Selection : Focusing on Multivariate Time Series

  • Byun, Jun-Hyung;Kim, Ji-Ho;Choi, Young-Jin;Lee, Hong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.35-47
    • /
    • 2020
  • 박스 오피스 예측은 영화 이해관계자들에게 중요하다. 따라서 정확한 박스 오피스 예측과 이에 영향을 미치는 주요 변수를 선별하는 것이 필요하다. 본 논문은 영화의 박스 오피스 예측 정확도 향상을 위해 다변량 시계열 데이터 분류와 주요 변수 선택 방법을 제안한다. 연구 방법으로 한국 영화 일별 데이터를 KOBIS와 NAVER에서 수집하였고, 랜덤 포레스트(Random Forest) 방법으로 주요 변수를 선별하였으며, 딥러닝(Deep Learning)으로 다변량 시계열을 예측하였다. 한국의 스크린 쿼터제(Screen Quota) 기준, 딥러닝을 이용하여 영화 개봉 73일째 흥행 예측 정확도를 주요 변수와 전체 변수로 비교하고 통계적으로 유의한지 검정하였다. 딥러닝 모델은 다층 퍼셉트론(Multi-Layer Perceptron), 완전 합성곱 신경망(Fully Convolutional Neural Networks), 잔차 네트워크(Residual Network)로 실험하였다. 결과적으로 주요 변수를 잔차 네트워크에 사용했을 때 예측 정확도가 약 93%로 가장 높았다.

지지벡터회귀분석을 이용한 무기체계 신뢰도 예측기법 (A Reliability Prediction Method for Weapon Systems using Support Vector Regression)

  • 나일용
    • 한국군사과학기술학회지
    • /
    • 제16권5호
    • /
    • pp.675-682
    • /
    • 2013
  • Reliability analysis and prediction of next failure time is critical to sustain weapon systems, concerning scheduled maintenance, spare parts replacement and maintenance interventions, etc. Since 1981, many methodology derived from various probabilistic and statistical theories has been suggested to do that activity. Nowadays, many A.I. tools have been used to support these predictions. Support Vector Regression(SVR) is a nonlinear regression technique extended from support vector machine. SVR can fit data flexibly and it has a wide variety of applications. This paper utilizes SVM and SVR with combining time series to predict the next failure time based on historical failure data. A numerical case using failure data from the military equipment is presented to demonstrate the performance of the proposed approach. Finally, the proposed approach is proved meaningful to predict next failure point and to estimate instantaneous failure rate and MTBF.

수소 메이저 홀드오버 시간예측을 위한 머신러닝 모델 개발 (Development of Machine Learning Model to Predict Hydrogen Maser Holdover Time)

  • 김상준;이영규;이준효;이주현;최경원;오주익;유동희
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.111-115
    • /
    • 2024
  • This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE: 221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the complex nature of data that changes over time and how well the model reflects this. The application of a machine learning prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series prediction and achieve improved prediction performance.

시계열 분석을 이용한 소프트웨어 미래 고장 시간 예측에 관한 연구 (The Study for Software Future Forecasting Failure Time Using Time Series Analysis.)

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제11권3호
    • /
    • pp.19-24
    • /
    • 2011
  • 소프트웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나, 단조증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간 절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구 하였다. 시계열 분석에 이용되는 단순이동 평균법과 가중이동평균법, 지수평활법을 이용하여 미래고장 시간을 예측하여 비교하고자 한다. 실증분석에서는 고장간격 자료를 이용하여 모형들에 대한 예측값을 평균자승오차를 이용하여 비교하고 효율적 모형을 선택 하였다.

Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구 (A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis)

  • 권현한;문영일
    • 대한토목학회논문집
    • /
    • 제26권2B호
    • /
    • pp.131-137
    • /
    • 2006
  • 본 연구에서는 기존 매개변수적 수문시계열 예측모형을 보완하고자 Singular Spectrum Analysis(SSA)와 Linear Recurrent Formula를 결합한 모형을 제안하였다. SSA는 주로 시계열에 내재해 있는 구성성분을 추출하기 위한 목적으로 많이 이용되고 있다. 이러한 관점에서 본 연구에서는 엘니뇨 및 라니냐 등의 기상현상과 수문사상의 상관성 분석에 주로 적용되고 있는 SSA와 시계열 예측을 위해서 Linear Recurrence Formula를 결합한 예측 모형을 월단위의 수위와 유입량 시계열 자료를 대상으로 적용성 및 타당성을 검토해 보았다. 모형을 통해 수문시계열을 모의한 결과 전체적인 통계적인 특성 및 시각적인 검토에서 실측자료와 매우 유사한 모의가 가능하였으며 실측 자료를 바탕으로 Blind Forecasting을 실시한 결과 2가지 예에서 모두 1년 정도의 예측구간에서 합리적인 결과를 제시하여 주었다. 따라서 단기예측을 수문모형으로서 적용이 가능할 것으로 사료된다.