• 제목/요약/키워드: time-series prediction

검색결과 912건 처리시간 0.03초

시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용 (A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge)

  • 유형주;이승오;최서혜;박문형
    • 한국방재안전학회논문집
    • /
    • 제12권2호
    • /
    • pp.73-82
    • /
    • 2019
  • 최근 이상기후로 인한 집중호우에 따른 하천변 사회기반시설의 침수피해가 증가하고 있으며, 침수 가능성 여부에 대한 신속한 예 경보가 필요한 실정이다. 일반적인 홍수 예 경보는 하천수위를 이용하고 있으며, 수치모형을 이용하여 하천수위를 예측하는 연구가 대부분이었다. 그러나 수치모형을 이용한 하천수위 예측은 결과가 정확한 반면 수치모의 시간이 오래 소요된다는 한계점이 있어 최근에는 인공신경망 등을 적용한 자료기반의 수위예측 모형이 많이 이용되고 있다. 하지만 기존의 인공신경망을 활용한 수위예측 연구는 시간적 매개변수를 고려하지 못하였다는 한계점이 존재한다. 본 연구에서는 시간적 매개변수(Time delay= 2시간)를 고려한 NARX 신경망 모형을 사용하여 한강대교의 수위를 예측하였다. 또한 NARX 모형의 적합성을 판단하기 위하여 인공신경망(ANN) 모형과, 순환신경망(RNN)모형의 결과와 비교하였다. 2009년에서 2018년까지 10년간의 수문자료를 이용하여 70%를 학습시키고 검정과 평가에 15%를 사용하여 2018년의 한강대교 3시간 후 수위를 예측한 결과 평균제곱근오차(RMSE)의 경우 ANN, RNN, NARX model이 각각 0.20 m, 0.11 m, 0.09 m, 평균절대오차(MAE)의 경우, 각각 0.12 m, 0.06 m, 0.05 m, 첨두수위 오차(Peak Error)는 각각 1.56 m, 0.55 m, 0.10 m로 나타났다. 연구 대상지역에 대한 시간적 매개변수를 고려한 예측 결과의 오차분석을 통하여 NARX 신경망 모형을 사용하는 것이 수위예측 모형 구축이 가장 적합한 것으로 나타났다. 이는 NARX 신경망 모형이 과거의 입력자료를 고려함으로써 시계열 자료의 변동 추세도 학습 할 수 있으며, 또한 모형 내 활성함수를 쌍곡선탄젠트(Hyperbolic tangent) 및 Rectified Linear Unit(ReLU) 함수를 사용하여 고수위 예측 시에도 정확한 예측 값을 도출할 수 있기 때문이다. 그러나 NARX 신경망 모형은 시퀀스 길이가 길어짐에 따라 기울기 소실문제(Vanishing gradient)가 발생하는 한계점이 있어 향후에는 이를 보완한 LSTM(Long Short Term Model)모형을 이용하여 수위예측의 정확도를 검토하고자 한다.

소셜데이터 및 ARIMA 분석을 활용한 소비자 관점의 헬스케어 기술수요 예측 연구 (A Study on the Demand Forecasting of Healthcare Technology from a Consumer Perspective : Using Social Data and ARIMA Model Approach)

  • 양동원;이준기
    • 한국IT서비스학회지
    • /
    • 제19권4호
    • /
    • pp.49-61
    • /
    • 2020
  • Prior studies on technology predictions attempted to predict the emergence and spread of emerging technologies through the analysis of correlations and changes between data using objective data such as patents and research papers. Most of the previous studies predicted future technologies only from the viewpoint of technology development. Therefore, this study intends to conduct technical forecasting from the perspective of the consumer by using keyword search frequency of search portals such as NAVER before and after the introduction of emerging technologies. In this study, we analyzed healthcare technologies into three types : measurement technology, platform technology, and remote service technology. And for the keyword analysis on the healthcare, we converted the classification of technology perspective into the keyword classification of consumer perspective. (Blood pressure and blood sugar, healthcare diagnosis, appointment and prescription, and remote diagnosis and prescription) Naver Trend is used to analyze keyword trends from a consumer perspective. We also used the ARIMA model as a technology prediction model. Analyzing the search frequency (Naver trend) over 44 months, the final ARIMA models that can predict three types of healthcare technology keyword trends were estimated as "ARIMA (1,2,1) (1,0,0)", "ARIMA (0,1,0) (1,0,0)", "ARIMA (1,1,0) (0,0,0)". In addition, it was confirmed that the values predicted by the time series prediction model and the actual values for 44 months were moving in almost similar patterns in all intervals. Therefore, we can confirm that this time series prediction model for healthcare technology is very suitable.

변환된 자기회귀이동평균 모형에서의 예측구간추정 (Prediction Interval Estimation in Ttansformed ARMA Models)

  • 조혜민;오승언;여인권
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.541-550
    • /
    • 2007
  • 시계열자료를 분석하는데 있어 중요한 목적 중에 하나가 미래값에 대한 예측이다. 일반적으로 자기회귀이동평균모형에서는 백색잡음이 정규분포를 따른다는 가정 하에서 모수의 추론과 예측 및 예측구간의 추정이 이루어지고 있다. 그러나 자료가 이러한 가정을 만족하지 않는 경우, 자료를 가정에 맞게 변환시킨 후 분석하는 방법을 생각해 볼 수 있다. 이 논문에서는 변환된 자료를 분석하여 얻은 결과를 이용하여 본래의 척도에서의 미래값에 대한 예측구간을 추정하는 문제에 대해 알아본다. 제안하는 방법에서는 먼저 적절한 변환을 이용하여 자료를 정규가정을 만족하도록 변환시키고 변환된 자료를 이용하여 미래값에 대한 예측구간을 추정한 후, 역변환을 이용하여 예측구간을 추정한다. 이 논문에서는 시계열분석에서 모델링이 상대적으로 어려운 왜도의 문제를 해결하기 위해 Yeo-Johnson 변환을 중심으로 한 방법론을 소개한다. 모의실험 결과 제안된 방법에 의한 단측예측구간의 포함확률이 변환을 사용하지 않은 구간보다 명목수준에 가까운 것을 확인하였다.

계층적 분류구조의 퍼지시스템 설계 및 시계열 예측 응용 (Design of Fuzzy System with Hierarchical Classifying Structures and its Application to Time Series Prediction)

  • 방영근;이철희
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.595-602
    • /
    • 2009
  • 시스템의 동작특성을 표현하는 퍼지 규칙들은 퍼지 클러스터링 기법에 매우 의존적이다. 만약, 클러스터링 기법의 분류 능력이 개선된다면, 그들에 의해 생성되는 퍼지 규칙과 식별되는 파라미터들이 보다 정밀해 질 수 있으므로 시스템의 성능이 개선될 수 있다. 따라서 본 논문에서는 분류능력이 강화된 새로운 계층 구조 클러스터링 알고리즘을 제안한다. 제안된 클러스터링 기법은 데이터 사이의 통계적 특성과 상관성을 고려하여 보다 정확하게 데이터들을 분류할 수 있도록 2개의 클러스터의 구조를 갖는다. 또한, 본 논문은 차분 데이터를 이용하여 원형 데이터의 패턴이나 규칙들이 명확하게 반영될 수 있도록 하며, 각각의 차분 데이터들의 다양한 특성을 고려할 수 있도록 다중 퍼지 시스템을 구현한다. 마지막으로, 제안된 기법들의 유효성을 다양한 비선형 시계열 데이터들의 예측을 통해 검증한다.

해외건설수주액 예측을 위한 최적모형 개발 (Development of an Optimal Model for Forecasting Overseas Construction Orders)

  • 이광원;조웅현
    • 한국건설관리학회논문집
    • /
    • 제21권4호
    • /
    • pp.30-37
    • /
    • 2020
  • 본 연구는 해외건설수주액을 설명하는 다양한 시계열 모형의 비교와 검증을 통해, 예측력 관점에서 가장 적합한 해외건설수주 예측모형을 선택하고(모형선택), 이를 다른 국가의 해외건설수주 예측에도 적용하여 개발된 모형의 보편성을 확인하는데(일반화 검증) 목적이 있다. 연구에는 1981년부터 2019년까지의 연도별 해외건설수주액, 두바이유가 및 국가별 환율 데이터를 활용하였다. 2016~2019년간 예측치와 실측치 간의 오차(MAPE, RMSE, MAE)가 낮고, 2018-2019년간 해외건설수주액 증감여부를 정확하게 맞추는 모형을 선택하였는데, 이러한 기준에 따라 VAR모형이 선택되었다. 이를 활용하여 중국 해외건설수주액을 예측한 결과도 실제와 부합하였다. 이러한 분석 결과는 추후 세계 건설수주 시장 전반을 분석하는 종합적 모형개발 가능성을 시사한다.

시계열 자료에서 불변하는 인과성 탐색: 원-달러 환율 데이터에 적용 (Invariant causal prediction for time series data: Application to won dollar exchange rate data)

  • 김미정
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.837-848
    • /
    • 2021
  • 본 연구에서는 Pfister 등 (2019)에서 제시된 시계열 데이터에 대해서 시간이 지나도 불변하는 인과성(invariant causality)을 갖는 변수를 찾는 방법에 대해서 설명하고자 한다. 시계열에서 주로 이용되는 Granger causality 방법은 인과 관계를 찾기 보다는 선행한 사건과 추후에 일어나는 사건과의 연관성을 찾는 방법이며, 때로는 허위 연관성의 결과를 산출하기도 한다. Chow 검정은 고정된 모형에 대해서 특정 시점 전후의 차이를 검정하는데 이용된다. 기존 방법은 높은 설명을 갖는 모형을 찾는데 중점을 두었는데, 이러한 모형은 환경의 변화에 따라 같은 모형이 유지되지 않을 가능성이 있다. Pfister 등 (2019)에서 제시된 모형은 설명변수와 종속변수 간의 조건부 관계를 찾는데 중점을 두고 있기 때문에, 환경의 변화에도 불변하는 인과성을 찾는데 유용하게 이용될 수 있다. 특히, 거시 경제 데이터는 측정하기 어려운 많은 변수로 인해 설명력이 높은 모형을 찾는 것이 어렵기 때문에, 기존 방법을 이용하기 보다는 Pfister 등 (2019)의 모형을 적용하는 것이 의미가 있다. 본 연구에서는 Pfister 등 (2019)가 제시한 방법을 이용하여 원 달러 환율에 불변하는 인과성을 갖는 거시경제 변수를 찾고자 한다.

Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측 (Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model)

  • 김유일
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

부산항 컨테이너 물동량을 이용한 시계열 및 딥러닝 예측연구 (Time series and deep learning prediction study Using container Throughput at Busan Port)

  • 이승필;김환성
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.391-393
    • /
    • 2022
  • 최근에는 딥러닝과 빅데이터를 기반으로 한 수요예측 기술이 전자상거래, 물류, 유통 분야의 스마트화를 가속화하고 있다. 특히, 글로벌 운송 네트워크와 현대적인 지능형 물류의 중심인 항만은 4차 산업혁명으로 인한 세계 경제 및 항만 환경의 변화에 발 빠르게 대응하고 있습니다. 항만물동량 예측은 신항만 건설, 항만확장, 터미널 운영 등 다양한 분야에서 중요한 영향을 담당하고 있다. 따라서 본 연구의 목적은 항만 물동량 예측에 자주 쓰이는 시계열 분석과 타 산업에서 좋은 결과를 도출해내고 있는 딥러닝 분석을 비교하여 부산항의 미래 컨테이너 예측에 적합한 예측모델을 제시하는 것이다. 부산항 컨테이너 물동량을 이용하여 학습시키고 그 이후 물동량 예측을 진행하였다. 또한, 상관관계 분석을 통해 물동량 변화와 관련된 외부변수를 선정하여 다변량 딥러닝 예측모델에 적용하였다. 그 결과 부산항 컨테이너 물동량만 이용한 단일변수 예측모델에서 LSTM의 오차가 가장 낮았고, 외부변수를 이용한 다변수 예측모델에서도 LSTM의 성능이 가장 우수하였다.

  • PDF

딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석 (Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm)

  • 김영희;장관종
    • 융합정보논문지
    • /
    • 제11권3호
    • /
    • pp.7-13
    • /
    • 2021
  • 본 연구는 딥러닝(Deep Learning) 알고리즘 GAN 모델을 기반으로 초미세먼지(PM2.5) 인공지능 예측시스템을 개발한다. 실험 데이터는 시계열 축으로 생성된 온도, 습도, 풍속, 기압의 기상변화와 SO2, CO, O3, NO2, PM10와 같은 대기오염물질 농도와 밀접한 관련이 있다. 데이터 특성상, 현재시간 농도가 이전시간 농도에 영향을 받기 때문에 반복지도학습(Recursive Supervised Learning) 예측 모델을 적용하였다. 기존 모델인 CNN, LSTM의 정확도(Accuracy)를 비교분석을 위해 관측값(Observation Value)과 예측값(Prediction Value)간의 차이를 분석하고 시각화했다. 성능분석 결과 제안하는 GAN이 LSTM 대비 평가항목 RMSE, MAPE, IOA에서 각각 15.8%, 10.9%, 5.5%로 향상된 것을 확인하였다.

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.