• Title/Summary/Keyword: time-dependent effect

Search Result 2,013, Processing Time 0.034 seconds

Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law (시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측)

  • Park, T.;Ryou, R.;Lee, M.G.;Chung, K.H.;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.330-333
    • /
    • 2009
  • The time-dependent constitutive law was developed based on viscoelastic-plasticity to describe the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.

  • PDF

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF

Propensity score methods for estimating treatment delay effects (생존자료분석에서 성향 점수를 이용한 treatment delay effect 추정법에 대한 연구)

  • Jooyi Jung;Hyunjin Song;Seungbong Han
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.415-445
    • /
    • 2023
  • Oftentimes, the time dependent treatment covariate and the time dependent confounders exist in observation studies. It is an important problem to correctly adjust for the time dependent confounders in the propensity score analysis. Recently, In the survival data, Hade et al. (2020) used a propensity score matching method to correctly estimate the treatment delay effect when the time dependent confounder affects time to the treatment time, where the treatment delay effects is defined to the delay in treatment reception. In this paper, we proposed the Cox model based marginal structural model (Cox-MSM) framework to estimate the treatment delay effect and conducted extensive simulation studies to compare our proposed Cox-MSM with the propensity score matching method proposed by Hade et al. (2020). Our simulation results showed that the Cox-MSM leads to more exact estimate for the treatment delay effect compared with two sequential matching schemes based on propensity scores. Example from study in treatment discontinuation in conjunction with simulated data illustrates the practical advantages of the proposed Cox-MSM.

Effects of Illumination on Satisfaction of Night Use at Urban Neighborhood Park (조명이 도시근린공원의 야간이용만족도에 미치는 영향)

  • 최연철;김진선
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.92-99
    • /
    • 2001
  • This study analyzed the effects of illumination on psychological accessibility from a view of satisfaction of night use at urban neighborhood park for actual night users. For this, we have classified the effects of illumination as five sampled independent variables from 12 effects of illumination, and tested the relationship with satisfaction of night use of a dependent variable by multiple regression analysis. The results of this study are as follows; 1) The effects of illumination for night use at urban neighborhood park were divided into five factors; (1) direct effect, (2) effect of promoting use, (3) effect of ensuring security, (4) effect of preparing landscape in the night time, and (5) psychological effect. Among independent variables indicating characteristics of effects of each illumination, uneasiness at night use was high. 2) In a multiple regression model, when other conditions were not changed, the value of security of night use (X\ulcorner) had maximumly an affect on the value of dependent. And, the value of danger to meet the depraved(X\ulcorner) had minimally an affect on the value of dependent variable. 3) For the contribution of security of nigh use(X\ulcorner) and brightness of present using space(X$_4$) to satisfaction of night use(Y) of dependent variable, they had a nearly equal effect on that, and showed about 2 times importance compared to familiarity with park(X\ulcorner) and the beauty of park(X\ulcorner). Also, they showed about 7 times contribution to satisfaction of night use compared to danger to meet the depraved(X\ulcorner), which had minimally an affect on the value of dependent variable, as the most important variables. 4) For the effects of illumination on satisfaction of night use, the effect of ensuring security - pursues security of park for the general rather than security for the specific class or subject - and direct effect to offer proper brightness in using space relatively affected on it much compared to psychological effect, effect of preparing landscape in night time, and effect of promoting use. A research on the psychological effects among the variables related to illumination as well as physical circumstances such as the height, location, direction of illumination should be studied.

  • PDF

View-Dependent Real-time Rain Streaks Rendering (카메라 의존적 파티클 시스템을 이용한 실시간 빗줄기 렌더링)

  • Im, Jingi.;Sung, Mankyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.468-480
    • /
    • 2021
  • Realistic real-time rain streaks rendering has been treated as a very difficult problem because of various natural phenomena. Also, in creating and managing a large number of particles, a large amount of computer resources had to be used. Therefore, in this paper, we propose a more efficient real-time rain streaks rendering algorithm by generating view-dependent rain particles and expressing a large amount of rain even with a small number. By creating a 'rain space' dependent on the field of view of the camera moving in real time, particles are rendered only in that space. Accordingly, even if a small number of particles are rendered, since the rendering is performed in a limited space, an effect of rendering a very large amount of particles can be obtained. This enables very efficient real-time rendering of rain streaks.

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop;Kim, Nam-Il;Shin, Dong Ku
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.355-376
    • /
    • 2007
  • The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.

Non-Linear Optical Properties of Polyacetylene Using Ab Initio Time-Dependent Hartree-Fock Theory (폴리 아세틸렌의 비선형 광학성질에 대한 양자 역학적 고찰)

  • Kim, Seung Joon
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.317-326
    • /
    • 1996
  • The frequency dependent longitudinal polarizabilities ${\alpha}zz(\omega)$ and the second hyper-polarizabilities ${\gamma}zzzz(\omega)$ of the linear polyenes, $C_4H_6\;to\;C_{30}H_{32}$, have been evaluated using the ab initio time-dependent coupled perturbed Hartree-Fock (TDCPHF) theory with the 6-31G basis set. The ratios of the dynamic properties to the static values have been examined to illustrate the relative dispersion effect and extrapolated to the infinite polymer limit. Also the effect of interchain interaction for linear and nonlinear optical properties has been investigated for $C_4H_6$ and the theoretical discussion has been described to overcome the limitation of ab initio TDHF method in the resonance region.

  • PDF

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Effects of soil-structure interaction on construction stage analysis of highway bridges

  • Ates, Sevket;Atmaca, Barbaros;Yildirim, Erdal;Demiroz, Nurcan Asci
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.169-186
    • /
    • 2013
  • The aim of this paper is to determine the effect of soil-structure interaction and time dependent material properties on behavior of concrete box-girder highway bridges. Two different finite element analyses, one stage and construction stage, have been carried out on Komurhan Bridge between Elazi$\breve{g}$ and Malatya province of Turkey, over Fırat River. The one stage analysis assume that structure was built in a second and material properties of structure not change under different loads and site conditions during time. However, construction stage analysis considers that construction time and time dependent material properties. The main and side spans of bridge are 135 m and 76 m, respectively. The bridge had been constructed in 3 years between 1983 and 1986 by balanced cantilever construction method. The parameters of soil-structure interaction (SSI), time dependent material properties and construction method are taken into consideration in the construction stage analysis while SSI is single parameter taking into consideration in the one stage analysis. The 3D finite element model of bridge is created the commercial program of SAP2000. Time dependent material properties are elasticity modulus, creep and shrinkage for concrete and relaxation for steel. Soft, medium, and firm soils are selected for evaluating SSI in both analyses. The results of two different finite element analyses are compared with each other. It is seen that both construction stage and SSI have a remarkable effect on the structural behavior of the bridge.

Impacts of temporal dependent errors in radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.180-180
    • /
    • 2015
  • Weather radar has been widely used in measuring precipitation and discharge and predicting flood risks. The radar rainfall estimate has one of the essential problems in terms of uncertainty and accuracy. Previous study analyzed radar errors to reduce its uncertainty or to improve its accuracy. Furthermore, a recent analyzed the effect of radar error on rainfall-runoff using spatial error model (SEM). SEM appropriately reproduced radar error including spatial correlation. Since the SEM does not take the time dependence into account, its time variability was not properly investigated. Therefore, in the current study, we extend the SEM including time dependence as well as spatial dependence, named after Spatial-Temporal Error Model (STEM). Radar rainfall events generated with STEM were tested so that the peak runoff from the response of a basin could be investigated according to dependent error. The Nam River basin, South Korea, was employed to illustrate the effects of STEM on runoff peak flow.

  • PDF