• Title/Summary/Keyword: time system

Search Result 53,628, Processing Time 0.072 seconds

A Model for Performance Analysis of the Information Processing System with Time Constraint (시간제약이 있는 정보처리시스템의 성능분석 모형)

  • Hur, Sun;Joo, Kook-Sun;Jeong, Seok-Yun;Yun, Joo-Deok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we consider the information processing system, which organizes the collected data to meaningful information when the number of data collected from multiple sources reaches to a predetermined number, and performs any action by processing the collected data, or transmits to other devices or systems. We derive an analytical model to calculate the time until it takes to process information after starting to collect data. Therefore, in order to complete the processing data within certain time constraints, we develop some design criteria to control various parameters of the information processing system. Also, we analyze the discrete time model for packet switching networks considering data with no particular arrival nor drop pattern. We analyze the relationship between the number of required packets and average information processing time through numerical examples. By this, we show that the proposed model is able to design the system to be suitable for user's requirements being complementary the quality of information and the information processing time in the system with time constraints.

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System for the Load Impedance Measurement (부하 임피던스 측정을 위한 랩뷰기반 시간-주파수 영역 반사파 실시간 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1803-1804
    • /
    • 2006
  • The purpose of this paper is to implement a Labview based TFDR Real Time system through the instruments of Pci eXtensions for Instrumentation(PXI). The proposed load impedance measurement algorithm was verified by experiments via the implemented real time system. The TFDR real time system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display parts. To implement real time system, all of the parts wore programmed by the Labview which is one of graphical programming languages. In the application software implemented by the Labview we were able to design a suitable reference signal according to the length and frequency attenuation characteristics of the target cable and controled the arbitrary waveform generator(ZT500PXI) of the signal generation part and the digital storage oscilloscope(ZT430PXI) of the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we applied to the load impedance measurements. In the proposed load impedance algorithm a normalized time-frequency cross correlation function and a cross time-frequency distribution function was employed to calculate the reflection coefficient and phase difference between the input and the reflected signals.

  • PDF

Development of a Pneumatic Actuation System Real-Time Simulator Using a DSP Board and PC (DSP 카드 및 PC에 의한 공압구동장치의 실시간 모의시험기 개발)

  • Lee, Seong-Rae;Shin, Hyo-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.320-326
    • /
    • 2000
  • The real-time simulator of a pneumatic actuation system that is composed of differential PWM signal generator, charge solenoid valve, discharge solenoid valve, actuator, load, and rotational potentiometer is developed using a DSP board and a PC. The simulator receives the control signals from the external controller through the A/D converter, updates the state and output variables of the Pneumatic actuation system responding to the input signals every sampling time, and sends out the output signals through the D/A converter in real time. The user can observe the displacements, velocities, pressures, and mass flows representing the operation of pneumatic actuation system through the PC monitor in real time. Also the user can see the moving images between the pistons and rotating arm realistically in real time. The accuracy of the real-time simulator is verified by the good agreement of the real-time simulation results and the experimental results of the pneumatic actuation system.

  • PDF

Real-time communication in an off-line programming (오프라인 프로그래밍에서의 실시간 통신)

  • Song, Jong-Tak;Son, Kwon;Lee, Min-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.40-43
    • /
    • 1996
  • An off-line programming, OLP, system is widely used in automation fines. To help an on-line robot system to carry out desirable tasks planned by the off-line simulation, an approach to the real-time communication is presented. The OLP system developed consists of a software, a host computer(PC), a SCARA robot body, four servo drivers, and four independent joint controllers. This study focuses on the software where real-time communication is included. The software, can be used in teaching, trajectory planning, real-time running, and performance evaluation. The evaluation of different control algorithms is one of the merits of the software. The software can give servo commands for task running. A comparison of generated and corresponding actual trajectories provides the evaluation of task performance. The safety, of the OLP system is ensured by alarming malfuntions of the system. The OLP system developed can reduce the teaching time and increase the user's convenience.

  • PDF

An Implementation of Clock Synchronization in FPGA Based Distributed Embedded Systems Using CDR (CDR을 사용한 FPGA 기반 분산 임베디드 시스템의 클록 동기화 구현)

  • Song, Jae-Min;Jung, Yong-Bae;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Time synchronization between distributed embedded systems in the Real Time Locating System (RTLS) based on Time Difference of Arrival (TDOA) is one of the most important factors to consider in system design. Clock jitter error between each system causes many difficulties in maintaining such a time synchronization. In this paper, we implemented a system to synchronize clocks between FPGA based distributed embedded systems using the recovery clock of CDR (clock data recovery) used in high speed serial communication to solve the clock jitter error problem. It is experimentally confirmed that the cumulative time error that occurs when the synchronization is not performed through the synchronization logic using the CDR recovery clock can be completely eliminated.

Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability (Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.

Design of Passivity Tele-Operation System Using Fuzzy Wave Variables (퍼지 웨이브 변수를 이용한 수동성 원격 시스템 설계)

  • Park, Beom-Seok;Yoo, Sung-Goo;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • In the bilateral tele-operation system, time delay may be a critical problem. Even if system modeling error or time delay occurs, when applied to wave transformation system, the system's stability can be achieved. Using the characteristic b which is an important parameter of wave transformation, the system can display robust performance for time delay. However, since assuming and that the time delay was fixed developing a theory, a stability cannot be guaranteed about the time-varying delay. Therefore, In the paper, Therefore, in this paper, we studied for the method that controls this by applying the fuzzy algorithm which surveyed the timevarying delay characteristics and can adjust the b according to it adaptively.

A study on the power system stabilizer using discrete-time adaptive sliding mode control (이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구)

  • Park, Young-Moon;Kim, Wook
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF

a Study on the Real-time Data Linkage of Field Control System for Distributed Control (분산제어를 위한 필드제어시스템의 실시간 데이터 연계)

  • Kim, S.G.;Song, S.I.;Oh, E.S.;Lee, S.W.;Gwak, K.Y.;Lee, E.W.;Park, T.R.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.777-779
    • /
    • 2003
  • This paper describes the real-time data linkage of the field control system for distributed control in nuclear power plant environment. The most important keys of digital control system in nuclear power plant are the reliability and stability of system, and real-time control ability. This Paper brought up the hardware construction using a new method about the design of each station located upon control transmission network to improve real-time ability of field control system, and measured the station binding time between devices connected to field control module. And it was confirmed performance improvement of overall system for real-time data linkage between control devices.

  • PDF

Stability Analysis of Networked Control System with Data Loss and Time Delay (데이터손실과 시간지연을 고려한 네트워크 제어시스템의 안정도 분석)

  • Jung, Joon-Hong;Jung, Tae-Soo;Kim, Joon-Kook;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.441-444
    • /
    • 2003
  • Network uncertainties such as data loss and time delay can vary the stability property of networked control system. Therefore, these uncertainties must be considered first in designing networked control system. In this paper, we present a new stability analysis method of networked control system with data loss and time delay. The proposed method can determine maximum allowable time delay and minimum allowable transmission rate that preserves stability performance of networked control system. The results of the simulation validate effectiveness of our stability analysis method.

  • PDF