• Title/Summary/Keyword: time slot allocation

Search Result 95, Processing Time 0.02 seconds

Interference Temperature based Frequency Sharing Scheme for Multiple Cognitive Radio Users (간섭 온도 기만의 다중 Cognitive Radio 사용자를 위한 주파수 공유 방안)

  • Kim, Seung-Wang;Kim, Hye-Ryeong;Choe, Sang-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.72-81
    • /
    • 2009
  • In this paper, we investigate a spectrum sharing scheme based on the interference temperature (IT), that is a recently introduced receiver-centric metric by FCC. We extend the existing frequency sharing procedure for single CR to the one for multiple CRs (or secondary users, SUs). In the proposed interference model, we consider the practical operating characteristics of primary users (PUs), stochastically activated (ON)/deactivated (OFF) at the time axis, and analyze quantitatively the CR user capacity based on the model. We define the instantaneous capacity for idle time-slot channel allocation and the mean capacity averaging this instantaneous capacity and use them for a proper frequency sharing. Apart from existing schemes, the proposed frequency sharing scheme changes the frequency parameters adaptively depending on the channel characteristics and does not need any sensing information from PUs. Through computer simulation, we verify the proposed model.

A Time Slot Allocation Method of UWB Distributed MAC Protocol for Fair QoS Provisionings to High Speed Multimedia Services in Wireless Home Networks (무선 홈 네트워크에서 고속 멀티미디어 서비스의 Fair QoS 제공을 위한 UWB Distributed MAC 프로토콜의 타임 슬롯 할당 방안)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.419-426
    • /
    • 2009
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. The WiMedia D-MAC fundamentally removes the problems of the centralized MAC revealed at IEEE 802.15.3 MAC, by adopting a distributed architecture. However, there is no completely distributed method for allocating fair data rates to all traffic streams by considering each stream's QoS parameter. In this paper, a novel fair distributed QoS admission control method is proposed. The proposed method is a fair, adaptive QoS provisioning method, by allocating time slots to devices according to the current traffic load condition, through executing only a proposed single satisfaction of QoS (SoQ) algorithm at each device.

  • PDF

Networked Airborne Relay-Based Positioning Scheme and Performance Enhancement Study Based on TDMA Networks (시분할다중접속 네트워크 기반의 공중 중계 기반 융합 측위 기법 및 성능 향상 연구)

  • Lee, Kyuman;Noh, Hongjun;Park, Hyungwon;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1824-1833
    • /
    • 2016
  • In this paper, we propose networked airborne relay-based positioning scheme (N-ARPS) based on time division multiple access (TDMA) networks to improve the performance of relative navigation (RelNav). To integrate the ARPS into TDMA, there are three problems such as slot allocation, selection of airborne relays, and method for signal loss to be solved. A subframe of N-ARPS is designed to assign the slots for broadcast and relay of navigation signals consecutively to minimize the effect of mobility. The selection algorithm determines the optimum set of airborne relays by selecting evenly distributed nodes depending on their distances to the master station. Finally, we uses precise position location information (PPLI) messages, which are received in data transmission period, to estimate a user position when the navigation signals are missing. The simulation results indicate that N-ARPS significantly improves user accuracy over RelNav.

Asynchronous Traffic Multi-Hop Transmission Scheme for N-Screen Services in Indoor and Ship Area Networks (선박 및 실내 N-스크린 서비스를 위한 비동기 트래픽 멀티홉 전송 기술)

  • Hur, Kyeong;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.950-956
    • /
    • 2015
  • In this paper, a WiMedia Distributed-MAC (D-MAC) protocol is adopted for development of a seamless N-screen wireless service in Indoor and Ship Area Networks. Furthermore, to provide the OSMU (One Source Multi Use) N-screen service through P2P streaming in the seamless D-MAC protocol, a ATMT (Asynchronous Traffic Multi-hop Transmission) technology is proposed and analyzed. In this system, a WiMedia ATMT D-MAC bridge transmits control and managing information to various sensors and instruments, from a central integrated ship area network station. For this technology, a time slot allocation scheme for WiMedia asynchronous traffic and a multi-hop resource reservation scheme are combined to evaluate the performance of each scheme. From simulation results, the proposed ATMT scheme enhances performances in viewpoints of N-screen asynchronous data latency and throughput, compared to the conventional WiMedia D-MAC system.

The Channel Scheduler based on Water-filling Algorithm for Best Effort Forward Link Traffics in AMC/TDM/CDM System (AMC/TDM/CDM 다중접속방식에서의 Best Effort 순방향 서비스를 위한 Water-filling Based 채널 스케줄러)

  • Ma, Dongl-Chul;Ki, Young-Min;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2003
  • The channel scheduler is suggested the radio resource management method in order to provide service with guaranteeing fairness and throughput to the users who use limited wireless channel. Proportional fairness scheduling algorithm is the channel scheduler used in the AMC(Adaptive Modulation and Coding)/TDM system, and this algorithm increases the throughput considering the user's time fairness. In this paper is suggested the channel scheduler combining CDM scheme available in AMC/TDM/CDM system. Unlike the system which only uses TDM which provide the only one user at the same slot, this scheduler can service a lot of users since this uses the CDM scheme with multi-cord channel. At every moment, allocation of transmission power to multi-channel users is problematic because of CDM scheme. In this paper, we propose a water-filling scheduling algorithm to solve the problem. Water-filling fairness(WF2) scheduling algorithm watches the average channel environment. So, this modified method guarantees fairness for each user in terms of power and service time.

  • PDF