• 제목/요약/키워드: time series data analysis

검색결과 1,857건 처리시간 0.038초

용천수 유출량 클러스터링 해석을 이용한 제주도 지하수 순환 해석 (Clustering Analysis with Spring Discharge Data and Evaluation of Groundwater System in Jeju Island)

  • 김태희;문덕철;박원배;박기화;고기원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.296-299
    • /
    • 2005
  • Time series of spring discharge data in Jeju island can provide abundant information on the spatial groundwater system. In this study, the classification based on time series of spring discharge was performed with clustering analysis: discharge rate and EC. Peak discharges are mainly observed in august or september. However, double peaks and late peaks of discharge are also observed at a plenty of springs. Based on results of clustering analysis, it can be deduced that GH model is not appropriate for the conceptual model of Groundwater system in Jeju island. EC distributions in dry season are also support the conclusion.

  • PDF

VAR와 그래프이론을 이용한 시계열의 인과성 분석 -미국 대두 가격 사례분석- (Time-Series Causality Analysis using VAR and Graph Theory: The Case of U.S. Soybean Markets)

  • 박호정;윤원철
    • 자원ㆍ환경경제연구
    • /
    • 제12권4호
    • /
    • pp.687-708
    • /
    • 2003
  • VAR(벡터자기회귀)에서 모형의 식별가정에 관한 주된 비판은 변수의 나열순서에 따라 결과가 달라진다는 것이다. 본 논문은 Swanson and Granger (1997) 이후 시계열 분석에 활발히 적용되기 시작한 그래프이론이 이와 같은 임의식별 문제를 해결함으로써, 자원가격의 가격발현과정을 이해하는데 유용한 수단임을 보여준다. 모형이 이론적 방법론을 소개한 후, 미국 대두의 지역 베이시스를 이용한 실증추정 결과를 제시한다.

  • PDF

실적자료에 의한 공동주택 하자보수비용의 시계열적 분석 (A Study on the Time Series Analysis of Defect Maintenance Cost in Apartment House according to the Actual Use Data)

  • 송동현;이상범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.177-178
    • /
    • 2011
  • Recently a great deal of people are taking legal action against the housing provider due to the defects of their Apartment house. And most of the housing companies are spending a huge amount of expenses and efforts to keep their brand value. This essay will carry out time series analysis the 20 housing district which are constructed by huge construction companies. This analysis itemised by metropolitan area(Seoul) and others to keep the degree of reliability, and converted future defect maintenance cost into current cost applied by discount rate to figure out suitability of defect maintenance cost. Even though, this essay is not able to represent standard of defect maintenance cost due to the insufficiency of record, while it will be assisted as a referance when long-term record of time series is estabilished.

  • PDF

Analysis on Decomposition Models of Univariate Hydrologic Time Series for Multi-Scale Approach

  • Kwon, Hyun-Han;Moon, Young-Il;Shin, Dong-Jun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1450-1454
    • /
    • 2006
  • Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are given to demonstrate highlight the power of this method in contrast and comparison of other ones. A presentation of the energy-frequency-time distribution of these signals found to be more informative and intuitive when based on Hilbert transformation.

  • PDF

머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 - (Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning -)

  • 신동윤
    • 한국BIM학회 논문집
    • /
    • 제9권1호
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.

일변량 분산 분석과 이변량 시계열 분석을 이용한 미숙아의 목소리 자극에 대한 심박동수와 호흡수 반응의 비교 (Comparison and Analysis of Response of Premature Infants to Auditory Stimulus)

  • 이혜정
    • Child Health Nursing Research
    • /
    • 제15권3호
    • /
    • pp.261-270
    • /
    • 2009
  • Purpose: The purpose of this study was to compare the result of one-way ANOVA with that of cross-correlation time series analysis in order to evaluate physiologic responses of premature infants to human voices. Methods: Four premature infants born prior to 32 weeks gestational age were included in the study. The Gould 4000TA Recording System recorded the preterm infant's heart and respiratory rate while they were listening to a pre-recorded voice recording. Each infant listened to both male and female voices (1 min each) at each testing session. Results: The results of both one-wayANOVA and cross-correlation time series analysis using heart and respiratory rate data were not consistent in some of premature infants. A cross-correlation time series analysis revealed that the responses of premature infant to vocal stimulation occurred at a varying number of seconds after the stimulus was presented and lasted for over 20-30 sec. Conclusion: The results indicate that a time series analysis can provide more detailed information on the rapidly changing physiologic status of premature infant to the auditory stimulus. In addition, the results provide an insight into an auditory responsitivity of premature infants to a naturally occurring sound, the human voice, in the neonatal intensive care unit.

  • PDF

시계열 자료에서의 특이치 발견 (Outlier detection in time series data)

  • 최정인;엄인옥;조형준
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.907-920
    • /
    • 2016
  • 본 논문의 목표는 분위수 자기회귀모형을 활용하여 시계열 자료에서 특이치를 발견하는 알고리즘을 제안하고, 기존의 방법들과 그 성능을 비교하여 실제 주가 조작 사례에 적용해 보는 것이다. 지금까지의 특이치 발견 연구는 대부분 일반적인 데이터 형태에서만 있어왔기 때문에 시계열 데이터에서의 연구는 미미한 편이다. 또한 모수적인 방법에만 제한되었는데, 모수적 모형은 복잡할 뿐만 아니라 소요되는 분석 시간도 길기 때문에 편리하지 않다. 따라서 본 연구에서는 분위수 자기회귀모형을 활용한 특이치 발견 알고리즘을 새롭게 제시하고, 다양한 경우의 모의실험을 통해 기존 알고리즘과 비교하도록 한다. 특히 시계열 자료에서의 특이치 발견은 주가 조작을 적발하는 데에 유용하게 활용될 수 있다. 시간에 따라 관측되던 주가가 갑자기 그 동안의 흐름에서 벗어나 특이치로 발견되었다면 혹시 인위적인 개입으로 조작된 것은 아닌지 의심해 볼 수 있기 때문이다. 따라서 실제 주가 조작 사례에 적용해 봄으로써 얼마나 빠른 시일 내에 주가 조작을 적발해 낼 수 있는지 살펴보았다.

Exploring COVID-19 in mainland China during the lockdown of Wuhan via functional data analysis

  • Li, Xing;Zhang, Panpan;Feng, Qunqiang
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.103-125
    • /
    • 2022
  • In this paper, we analyze the time series data of the case and death counts of COVID-19 that broke out in China in December, 2019. The study period is during the lockdown of Wuhan. We exploit functional data analysis methods to analyze the collected time series data. The analysis is divided into three parts. First, the functional principal component analysis is conducted to investigate the modes of variation. Second, we carry out the functional canonical correlation analysis to explore the relationship between confirmed and death cases. Finally, we utilize a clustering method based on the Expectation-Maximization (EM) algorithm to run the cluster analysis on the counts of confirmed cases, where the number of clusters is determined via a cross-validation approach. Besides, we compare the clustering results with some migration data available to the public.

시계열 데이터의 추정을 위한 웨이블릿 칼만 필터 기법 (The wavelet based Kalman filter method for the estimation of time-series data)

  • 홍찬영;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.449-451
    • /
    • 2003
  • The estimation of time-series data is fundamental process in many data analysis cases. However, the unwanted measurement error is usually added to true data, so that the exact estimation depends on efficient method to eliminate the error components. The wavelet transform method nowadays is expected to improve the accuracy of estimation, because it is able to decompose and analyze the data in various resolutions. Therefore, the wavelet based Kalman filter method for the estimation of time-series data is proposed in this paper. The wavelet transform separates the data in accordance with frequency bandwidth, and the detail wavelet coefficient reflects the stochastic process of error components. This property makes it possible to obtain the covariance of measurement error. We attempt the estimation of true data through recursive Kalman filtering algorithm with the obtained covariance value. The procedure is verified with the fundamental example of Brownian walk process.

  • PDF

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.19-27
    • /
    • 2022
  • 본 연구에서는 시계열 데이터 이상 탐지 수행을 위한 MLOps(Machine Learning Operations) 워크플로를 기술하고 관리할 수 있는 언어와 플랫폼을 제안한다. 시계열 데이터는 IoT 센서, 시스템 성능 지표, 사용자 접속량 등 많은 분야에서 수집되고 있다. 또한, 시스템 모니터링 및 이상 탐지 등 많은 응용 분야에 활용 중이다. 시계열 데이터의 예측 및 이상 탐지를 수행하기 위해서는 분석된 모델을 빠르고 유연하게 운영 환경에 적용할 수 있는 MLOps 플랫폼이 필요하다. 이에, 최근 데이터 분석에 많이 활용되고 있는 Python 기반의 AMML(AI/ML Modeling Language)을 개발하여 손쉽게 MLOps 워크플로를 구성하고 실행할 수 있도록 제안한다. 제안하는 AI MLOps 플랫폼은 AMML을 이용하여 다양한 데이터 소스(R-DB, NoSql DB, Log File 등)에서 시계열 데이터를 추출, 전처리 및 예측을 수행할 수 있다. AMML의 적용 가능성을 검증하기 위해, 변압기 오일 온도 예측 딥러닝 모델을 생성하는 워크플로를 AMML로 구성하고 학습이 정상적으로 수행됨을 확인하였다.