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ABSTRACTS 

Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and 

nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode 

functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. 

EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and 

nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and 

retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are 

given to demonstrate highlight the power of this method in contrast and comparison of other ones. A 

presentation of the energy-frequency-time distribution of these signals found to be more informative and 

intuitive when based on Hilbert transformation. 

 

Keywords : Nonstationary time series, Wavelet transform analysis, Hilbert spectral analysis, Intrinsic mode 

decomposition 

…………………………………………………………………………………………………………………… 

 

1. Introduction 

Traditionally, Fourier spectral analysis has been extensively used to examine the global energy frequency 

distribution. The many crucial restrictions associated with Fourier spectral analysis limit its applicability to 

linear, periodic, and stationary time series (Titchmarsh, 1948; Huang et al., 1998). In addition, both 

nonlinearity and nonstationarity may induce spurious harmonic components. 

Adjustable window Fourier spectral analysis is proposed in form of wavelet analysis to accommodate the 

nonstationarity of the time series. Yet, wavelet analysis constitutes a rigid framework owing to the selection 

of the mother wavelet that will be used to analyze all the data across all the scales and times. Wavelet analysis 

is still the best available non-stationary data analysis and it enjoys the capability of capturing gradual 

interwave frequency modulation and it fails in capturing intrawave frequency modulation. Therefore, and due 

to the non-adaptive mechanisms of wavelet analysis, physically meaningful interpretation to nonlinear 

phenomena based on wavelet analysis is not will advocated.  
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Many other miscellaneous methods have been utilized to decompose time series into components. Largely 

these methods have been designed to modify the global representation of the global Fourier analysis 

(Brockwell and Davis, 1991). Huang et al, (1998) summarized the necessary conditions required to represent 

the non-linear and nonstationary time series as having complete, orthogonal, local, and adaptive.   

In this manuscript, empirical mode decomposition (EMD) will generate intrinsic mode functions (IMF) based 

on direct extraction of the energy associated with various intrinsic time scales (Huang, et al., 1998). The 

extracted components admit well-behaved Hilbert transforms and their associated instantaneous frequencies 

capture linear and nonlinear behaviors ad dictated by data. 

Climatic time series are usually of finite duration, nonstationary, and intrinsically nonlinear. EMD is best 

suited to capture across-scale interactions in climatic time series. In this manuscript, we apply EMD to 

Nino1.2 time series and derive new insights into the physical attributes of the phenomena across scale. Some 

limitations of the method will be discussed. We follow two steps of analysis. First, obtain the intrinsic mode 

function components. Second, apply wavelet transform to the decomposed EMF and construct the energy 

frequency time distribution. 

 

2. Background 

Empirical Mode Decomposition 

Empirical mode decomposition algorithm has been recently introduced for processing of non-linear and non-

stationary signals (Huang et al, 2006). EMD defines the empirically based data-driven method to extract 

physically meaningful representation of data from nonlinear and nonstationary processes. EMD ability to 

extract the intrinsic features stems from its adaptive capacity which enables one to determine the 

instantaneous frequency of a signal. Hilbert-Huang Transformation (HHT) is the process of extracting the 

empirical mode decomposition and performing Hilbert spectral analysis. EMD has been devoted to 

decompose signals into intrinsic mode functions (IMF). The resulting component will have equal number of 

extremes and troughs and can have a variable amplitude and frequency as function of time. 

The first step for obtaining IMF is to connect both all minim and maxima by cubic spline. The first IMF is 

obtained by subtracting the mean of the two cubic functions from the original signal. The sifting process is the 

repetitive extraction of IMF, till residuum constitutes monotonic function (Huang et al, 2006). Once the IMFs 

are computed when could resort to discrete wavelet transformation or Hilbert transformation to determine the 

associated instantaneous frequency. EMD was shown to have a great potential for real-time decomposition 

and processing of climatic signals. 

 

3. Application  

Synthetic Time Series 

In this section we synthesize a time series where we show nonlinear interaction between the signals. Let our 

signal be ε+++=∑
=

2

1

43 ))sin(sin()sin(
i

i wwwX . The challenge for IMF is decompose the signal that is 

associated with noise into its original intrinsic signals. 

Figure 1 shows the synthesized signal and its building principal components. 
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Figure 1: Synthetic signal, (a) is the aggregated signal, (b), (c), and (e) are the original signal and (d) is 

nonlinear combination of signals in (e).  
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Figure 2: IMFs derived from the synthetic time series. 

IMF was carried out to decompose the signal. The sifting process in IMF has stopped after generating the four 

components shown in Figure 2. This figure shows the constituent major signals reconstructed adequately well. 

Let’s notice that because one fits a cubic spline for the peaks and troughs of the original signal, the fitted 

spline might be subjected to edge effect. However, the major components are reclaimed and the nonlinear 

interaction didn’t hinder the ability of IMF to extract the intrinsic modes of the signal.    

For comparison purposes, we decompose the signal using DWT. The nonlinear interaction in the signal will 

be challenging for DWT formulation that solely depends on linear correlation between the signal and the 



 1453 

mother wavelet function at different scales. The performance of DWT on this synthetic signal is shown in 

Figure 3. Once could notice that the original intrinsic components are not adequately reconstructed. The two 

signals that are linearly added to make the synthetic time are extracted fairly well. However, the nonlinear 

components are not extracted. One also could notice that there are spurious signals with spurious frequencies 

are extracted due to the contamination with noise. The DWT transformation is biased to fit the shape of the 

mother wavelet the constituent signals. 

Figure 4 further illustrates the original frequencies and the frequencies as picked by IMF and DWT. One 

could confidently conclude that IMF has managed to capture the major frequencies. This shows the ability of 

IMF to perform well when the intra-wave variability is present. The spurious frequency picked by DWT 

transformation is considered to be an average between the two nonlinearly combined signals.  

IMF could lend themselves to model the nonlinear and nonstationary climatic time series owing to the 

distinctive features of adaptability.  

Here we used Nino3 seas surface temperature to show the IMF capabilities in capturing across scale 

modulations. Figure 5 shows the one-year to 2-8-years cross wavelet spectrum as derived from IMF and DWT. 

The nonlinear interaction between the extracted components is very evident in the Figure x. It is shown that 

there is high energy signature (i.e., high variance) around 1880 and also 1985-2000. The phase of the 

interaction is different in the two cases reflecting the nonlinearity in the system. The modulation across scales 

could be quantified using IMF. 
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Figure 3: DWT components derived from the synthetic time series. 

 

5. Summary and Conclusion 

The comparisons between IMF and DWT were intended to be merely illustrative, it should be highly 

emphasized that no broader generalizations can be made about the superiority of any of the method for all 

classes of time series. The EMD allows the instantaneous frequency and the amplitude of the signal to be 

represented as functions of time. The importance of this three dimensional representation (frequency, 

amplitude, and time) allows accurate determination of the signal magnitude. EMD can adapt well to the local 

variation of the data which makes the decomposition fully account for the underlying physics of the process 

and not just to satisfy the devised mathematical setup. The feature of locality in EMD is crucial for 

nonstationarity where the time scale is not the determinant but the time of occurrence.  
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Figure 4: Global wavelet spectrum associated with the original signal, IMF, and DWT. 
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Figure 5: Cross wavelet spectrum, (a) 1-year versus 2-8-year as derived from DWT, (b) 1-year versus 2-

8-year as derived from IMF. 
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