• Title/Summary/Keyword: time domain method

Search Result 2,789, Processing Time 0.026 seconds

Pilot Assignment Method for the PAPR Reduction and Effective Channel Estimation in the SC-FDMA Communication System (PAPR 감소와 효과적 채널 추정을 위한 SC-FDMA 통신 시스템의 파이럿 배치 방법)

  • An, Dong-Geon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • PAPR of the pilot symbols can be reduced down by the CAZAC sequence in the SC-FDMA communication system. However, it is very complicated and takes quite a long time to compute the interpolation between the OFDM information symbols for the channel estimation because the pilot data are trasmitted in the block type. Furthermore, situation will be much more serious in the severe fading channel. Actually the pilot insertion of the comb type is much efficient and convenient for the channel estimation since the calculation of the interpolation can be made in the frequency domain symbol by symbol. But, the PAPR will be regrown when the pilot data are inserted with the information data in the comb type. So, in this paper, we like to study the PAPR reduction and comb type pilot assignment for the efficient channel estimation. Unlike the conventional SLM(selected mapping) method requiring the side information, our improved SLM method is to use the phase rotation sequence into information data without rotating phase of pilot. We use different pilot data according to the different phase rotation sequence. From the simulation result, it can be confirmed that when SLM method of 4 phase rotation sequence is used, PAPR is almost same to the block type method without pilot.

A Numerical Analysis of Porewater Pressure Predictions on Hillside Slopes (수치해석을 이용한 산사면에서의 간극수압 예측에 관한 연구)

  • 이인모;서정복
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.47-62
    • /
    • 1994
  • It has been well known that the rainfall-triggered rise of groundwater levels is one of the most important factors resulting the instability of the hillside slopes. Thus, the prediction of porewater pressure is an essential step in the evaluation of landslide hazard. This study involves the development and verification of numerical groundwater flow model for the prediction of groundwater flow fluctuations accounting for both of unsatu나toed flow and saturated flow on steep hillside slopes. The first part of this study is to develop a nomerical groundwater flow model. The numerical technique chosen for this study is the finitro element method in combination with the finite difference method. The finite element method is used to transform the space derivatives and the finite difference method is used to discretize the time domain. The second part of this study is to estimate the unknown model parameters used in the proposed numerical model. There were three parameters to be estimated from input -output record $K_e$, $\psi_e$, b. The Maximum -A-Posteriori(MAP) optimization method is utilized for this purpose, . The developed model is applied to a site in Korea where two debris avalanches of large scale and many landslides of small scale were occurred. The results of example analysis show that the numerical groundwater flow model has a capacity of predicting the fluctuation of groundwater levels due to rainfall reasonably well.

  • PDF

Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using MUR and GPML ABCs in the FDTD Method (유한차분법에서 MUR과 GPML 흡수경계조건을 이용한 동축 도파관 안테나에 접촉된 생체의 SAR 패턴 비교)

  • 구성모;권광희;이창원;원철호;조진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • The SAR patterns of biological objects contacted with coaxial waveguide antennal has been investigated, in which the biological object was modeled by a homogeneous and four-layered lossy human body. We derived the finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) ABCs in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of MUR and GPML ABCs in the FDTD method to obtain the absorbed power patterns in the media. The specific absorption rates (SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in the FDTD method. The SAR patterns of the FDTD method using MUR absorbing boundary conditions(ABCs) was compared with those of the FDTD method using GPML ABCs. The comparison exhibits that the penetration depth of the SAR patterns using MUR ABCs is deeper than that of the SAR patterns using GPML ABCs because of loss in free space. However, the spread in the lateral directions of the SAR patterns using GPML ABCs is smaller than of the SAR patterns using MUR ABCs.

  • PDF

Hand Motion Signal Extraction Based on Electric Field Sensors Using PLN Spectrum Analysis (PLN 성분 분석을 통한 전기장센서 기반 손동작신호 추출)

  • Jeong, Seonil;Kim, Youngchul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.97-101
    • /
    • 2020
  • Using passive electric field sensor which operates in non-contact mode, we can measure the electric potential induced from the change of electric charges on a sensor caused by the movement of human body or hands. In this study, we propose a new method, which utilizes PLN induced to the sensor around the moving object, to detect one's hand movement and extract gesture frames from the detected signals. Signals from the EPS sensors include a large amount of power line noise usually existing in the places such as rooms or buildings. Using the fact that the PLN is shielded in part by human access to the sensor, signals caused by motion or hand movement are detected. PLN consists mainly of signals with frequency of 60 Hz and its harmonics. In our proposed method, signals only 120 Hz component in frequency domain are chosen selectively and exclusively utilized for detection of hand movement. We use FFT to measure a spectral-separated frequency signal. The signals obtained from sensors in this way are continued to be compared with the threshold preset in advance. Once motion signals are detected passing throng the threshold, we determine the motion frame based on period between the first threshold passing time and the last one. The motion detection rate of our proposed method was about 90% while the correct frame extraction rate was about 85%. The method like our method, which use PLN signal in order to extract useful data about motion movement from non-contact mode EPS sensors, has been rarely reported or published in recent. This research results can be expected to be useful especially in circumstance of having surrounding PLN.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

A Fast Iris Region Finding Algorithm for Iris Recognition (홍채 인식을 위한 고속 홍채 영역 추출 방법)

  • 송선아;김백섭;송성호
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.876-884
    • /
    • 2003
  • It is essential to identify both the pupil and iris boundaries for iris recognition. The circular edge detector proposed by Daugman is the most common and powerful method for the iris region extraction. The method is accurate but requires lots of computational time since it is based on the exhaustive search. Some heuristic methods have been proposed to reduce the computational time, but they are not as accurate as that of Daugman. In this paper, we propose a pupil and iris boundary finding algorithm which is faster than and as accurate as that of Daugman. The proposed algorithm searches the boundaries using the Daugman's circular edge detector, but reduces the search region using the problem domain knowledge. In order to find the pupil boundary, the search region is restricted in the maximum and minimum bounding circles in which the pupil resides. The bounding circles are obtained from the binarized pupil image. Two iris boundary points are obtained from the horizontal line passing through the center of the pupil region obtained above. These initial boundary points, together with the pupil point comprise two bounding circles. The iris boundary is searched in this bounding circles. Experiments show that the proposed algorithm is faster than that of Daugman and more accurate than the conventional heuristic methods.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

A Power Control-Based MF-TDMA Resource Allocation Scheme for Next Generation Military Satellite Communication Systems (차기 군 위성통신망 체계에서 이기종 단말 운용을 고려한 전력제어 기반 MF-TDMA 자원할당 기법)

  • Woo, Soon;Park, Hyung-Won;Lee, Ho-Sub;Yoo, Youn-Sang;Jung, Byung-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1138-1147
    • /
    • 2012
  • In this paper, an efficient power control based MF-TDMA resource allocation scheme is proposed for next generation military satellite communication systems. The proposed scheme has the flexibility is used to support heterogeneous terminals with differ in transmission capabilities. The method can be divided into two parts : burst size calculation and burst structure determination. At first, we estimate the link budget taken into account a dynamic satellite link state variation. Then, applicable ACM level and burst size is chosen. In burst structure determination phase, we reorganize the burst structure in time-frequency domain by controlling limited power, bandwidth, time resources. In particular, we compensate the power spectral density among different terminals to integrate them in same transponder, Furthermore, we increase the packing efficiency by controlling the ACM level of the burst in applicable power spectral density range. Simulation results show that the method increase the spectral efficiency and burst packing efficiency. In addition, slot allocation rejection ratio is successfully reduced.

Modeling of Elastodynamic Problems in Finite Solid Media (유한 고체내 탄성동역학 문제의 모델링)

  • Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi mode conversion of guided wave scattering problems. Time dependent wave forms are obtained through the inverse Fourier transformation of the numerical solutions in the frequency domain. 3D BEM program development is underway to model more practical ultrasonic wave signals. Some encouraging numerical results have recently been obtained in comparison with the analytical solutions for wave propagation in a bar subjected to time harmonic longitudinal excitation. It is expected that the presented modeling techniques for elastic wave propagation and scattering can be applied to establish quantitative nondestructive evaluation techniques in various ways.

  • PDF

Non-Liner Analysis of Shear Beam Model using Mode Superposition (모드중첩법을 이용한 전단보 모델의 비선형 해석)

  • 김원종;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1999
  • To analyze the dynamic behavior of structure, direct integration and mode superposition may be utilized in time domain analysis. As finite number of frequencies can give relatively exact solutions, mode superposition is preferable in analyzing structural behavior. In non-linear analysis, however, mode superposition is seldom used since time-varying element stiffness changes stiffness matrix, and the change of stiffness matrix leads to the change of essential constants - natural frequencies and mode shapes. In spite of these difficulties, there are some attempts to adopt mode superposition because of low cost compared to direct integration, but the result is not satisfactory. In this paper, a method using mode superposition in non-linear analysis is presented by separating local element stiffness from global stiffness matrix with the difference between linear and non-linear restoring forces to the external force vectors included. Moreover, the hysteresis model changing with the relative deformation in each floor makes it possible to analyze non-linear behavior of structure. The proposed algorithm is applied to shear beam model and the maximum displacement is compared with the result using direct integration method.

  • PDF