Background: Russian sturgeon (Acipenser gueldenstaedtii) is an emerging candidate species in the Korean aquaculture domain owing to its highly valued caviar. Although the embryonic development of this species was previously described, the complete image data on the morphological differentiation of developing embryos have not been yet fully available. Further, with the viewpoint of larval production in hatchery, the effects of temperature on embryonic viability and the temporal window of hatching event have not been extensively studied. Hence, the objective of this study was to provide a complete set of photographic image data on the embryogenesis and also to examine the effects of incubation temperatures on embryonic viability and hatching event in farm-bred Russian sturgeon. Results: Typical characteristics of embryonic development including uneven, holoblastic cleavages with unequal blastomeres, followed by the formation of germ layer, neurulation, and organogenesis until hatching, were documented. Under different temperature conditions (12, 16, or $20^{\circ}C$), viability of embryos incubated at $12^{\circ}C$ was significantly lower as relative to those of 16 and $20^{\circ}C$ incubated embryos. Hatchability of embryos was higher, and the timing of hatching event was more synchronized at $20^{\circ}C$ than at 12 and $16^{\circ}C$. Conclusion: Data from this study suggest that the incubation of Russian sturgeon embryos at $20^{\circ}C$ would be desirable in the hatchery practice with respect to the good hatchability of embryos and the synchronization of hatching events. Additionally, the updated image data for complete embryonic development could be a useful reference guide for not only developmental researches but also artificial propagation of Russian sturgeon in farms.
Metadata Registry was developed to dynamically manage metadata and to increase interoperability between various and heterogeneous metadata. The built metadata registry can be used as a standard guideline for creation of new databases and it provides a radical data integration mechanism. However, in the situation that an enormous databases must be integrated progressively, there is a limit to the existing metadata-based approach. In case that each database has no statistical information for its use rate and the restricted cost is given to us for a unit time, existing metadata-based approaches do not provide how to select some databases to be preferentially integrated and to build a metadata registry progressively, In this paper, we propose a methodology that can create progressively metadata registries in the case. The proposed methodology is based on data visibility and hierarchical metadata registry. We also describe the system that have been developed for applying the methodology to a real domain, and then described its results.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.12
/
pp.6145-6158
/
2019
It is a challenge for the current security industry to respond to a large number of malicious codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using machine learning algorithms are being conducted as proactive prevention rather than post processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling malicious code as unstructured data. In addition, in the malicious code analysis domain, the k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious codes. For example, it is possible to classify malicious code families or analyze malicious code variants through similarity analysis with existing malicious codes. However, the main disadvantage of the k-NN algorithm is that the search time increases as the learning data increases. We propose a fast k-NN algorithm which improves the computation speed problem while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can also be used to search all data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if the k-NN approach is needed, and the central node can be effectively selected for clustering of large amount of data in various environments, it will be possible to design a sophisticated machine learning based system.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.37
no.2
/
pp.113-120
/
2009
To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination in a single computational domain. This imposes a computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is a momentum source method in which the action of rotor is approximated as momentum source in a stationary mesh system built around the airframe. This makes the simulation much easier. The magnitude of the momentum source is usually evaluated by the blade element theory, which often results in a poor accuracy. In the present work, we evaluate the momentum source from the simulation data by using the Navier-Stokes equations only for a rotor system. Using this data, we simulated the time-averaged steady rotor-airfame interaction and developed the unsteady rotor-airframe interaction. Computations were carried out for the simplified rotor-airframe model (the Georgia Tech configuration) and the results were compared with experimental data. The results were in good agreement with experimental data, suggesting that the present approach is a usefull method for rotor-airframe interaction analysis.
Kim, Hyun-jin;Kwon, Moon-hyuck;Cho, Wan-hee;Kim, Ki-chul;Kim, Jin-gon
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.284-287
/
2022
In order to respond to the complexity and uncertainty of water management due to the climate crisis, K-water established a digital twin water management platform based on our experience in operating ICT infrastructure such as hydrological data sensing and high-quality data management and water management capabilities. In this platform, data from related organizations and real-time observation data in the basin are displayed on 3D topographic domain. Also it is configured to support optimal decision-making through simulation for various situations, displaying and analyzing results, and feedback on them. It is completed to establish the platform for Sunjim river basin. Based on this technologies and experience, K-water is planning to expand this digital twin to 5 major rivers in Korea. Through this, it plans to build comprehensive decision-making system for efficient water management considering various conditions in entire basin. Also it aims to create a new water industrial ecosystem and contribute to secure technological competitiveness cooperating with private companies.
Alexander Kruttgen;Gerhard Haase;Helga Haefner;Matthias Imohl;Michael Kleines
Clinical and Experimental Vaccine Research
/
v.11
no.1
/
pp.96-103
/
2022
Purpose: Studies on the immune responses to severe acute respiratory syndrome coronavirus 2 vaccines are necessary to evaluate the ongoing vaccination programs by correlating serological response data and clinical effectiveness data. We performed a longitudinal immunological profiling of health care workers vaccinated with mRNA-1273 (Moderna, Cambridge, MA, USA). Half of these vaccinees had experienced a mild coronavirus disease 2019 (COVID-19) infection in the spring of 2020 ("COVID-recovered" cohort), whereas the other half of the vaccinees had no previous COVID-19 infection ("COVID-naive" cohort). Materials and Methods: Serum was drawn at multiple time points and subjected to assays measuring anti-Spike immunoglobulin G (IgG), avidity of anti-Spike IgG, avidity of anti-receptor binding domain (RBD) IgG, virus neutralizing activity, and interferon-γ release from stimulated lymphocytes. Results: Between both cohorts and within each cohort, we found remarkable inter-individual differences regarding cellular and humoral immune responses to the Moderna mRNA-1273 vaccine. Conclusion: First, our study indicates that the success of mRNA-1273 vaccinations should be verified by serological assays in order to identify "low-responders" to vaccination. Second, the kinetics of anti-S IgG and neutralizing activity correlate well with clinical effectiveness data, thus explaining incipient protection against infection 2 weeks after the first dose of mRNA-1273 in COVID-naive vaccinees. Third, our IgG-avidity data indicate that this incipient protection is mediated by low-avidity anti-RBD IgG and low-avidity anti-S IgG.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.3
/
pp.145-151
/
2023
3D-CNN is one of the deep learning techniques for learning time series data. Such three-dimensional learning can generate many parameters, so that high-performance machine learning is required or can have a large impact on the learning rate. When learning dynamic hand-gestures in spatiotemporal domain, it is necessary for the improvement of the efficiency of dynamic hand-gesture learning with 3D-CNN to find the optimal conditions of input video data by analyzing the learning accuracy according to the spatiotemporal change of input video data without structural change of the 3D-CNN model. First, the time ratio between dynamic hand-gesture actions is adjusted by setting the learning interval of image frames in the dynamic hand-gesture video data. Second, through 2D cross-correlation analysis between classes, similarity between image frames of input video data is measured and normalized to obtain an average value between frames and analyze learning accuracy. Based on this analysis, this work proposed two methods to effectively select input video data for 3D-CNN deep learning of dynamic hand-gestures. Experimental results showed that the learning interval of image data frames and the similarity of image frames between classes can affect the accuracy of the learning model.
In the early 1990s, IETF(Internet Engineering TaskForce) had started the discussion on new address protocol that can modify and supplement various drawbacks of existing IPv4 address protocol with the introduction of CIDR(Classless Inter-Domain Routing) which is a temporary solution for IPv4 address depletion, NAT, private IP address. While various standards related to new address protocol has been proposed, the SIPP(Simple Internet Protocol Plus) was adopted among them because it is regarded as the most promising solution. And this protocol has been developed into current IPv6. The new concepts are introduced with modifying a lot of deficiencies in the exisitng IPv4 such as real-time data processing, performance on QoS, security and the efficiency of routing. Since many security threats in IPv6 environment still exist, the necessity of stable data communication environment has been brought up continuously. This paper deveopled one-way communication algorithm in IPv6 based on the high possibility of protecting the system from uncertain and potential risk factors if the data is transmitted in one way. After the analysis of existing IPv6 and ICMPv6, this paper suggests one-way communication algorithm as a solution for existing IPv6 and ICMPv6 environment.
Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
KSCE Journal of Civil and Environmental Engineering Research
/
v.40
no.6
/
pp.547-553
/
2020
As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.
Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
Geophysics and Geophysical Exploration
/
v.25
no.3
/
pp.109-119
/
2022
The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.