• Title/Summary/Keyword: time domain data

Search Result 1,310, Processing Time 0.032 seconds

Improving Assessments of Maritime Traffic Congestion Based On Occupancy Area Density Analysis for Traffic Vessels (통항선박의 점용영역 밀집도 분석을 통한 해상교통혼잡도 평가 개선에 관한 연구)

  • Kim, Soung-Tae;Rhee, Hahn-Kyou;Gong, In-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • It may be reasonable to consider density per unit area over time rather than analyze traffic volume, which is simply the traffic volume per unit of time, in assessing the maritime traffic congestion of a certain area. This study contributes to the standardization of maritime traffic congestion assessment methods for the maritime traffic safety diagnosis institute while seeking a new method to minimize evaluation error due to converted traffic volume per ship tonnage level. To solve this problem, a method to evaluate maritime traffic congestion by comparing the area occupied by a vessel with the area of its route using vessel identification data from the Automatic Identification System (AIS) has been proposed. In this new model, it is possible to use actual data due to the development of information and communication technology, reducing conversion error while allowing for the evaluation of maritime traffic congestion by route.

Suppression of side lobe and grating lobe in ultrasound medical imaging system (의료용 초음파 영상 시스템에서 부엽과 격자엽의 억제)

  • Jeong, Mok Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.525-533
    • /
    • 2022
  • We propose an effective method for suppressing both side and grating lobes by applying 2-dimensional Fourier Transform to the received channel data during the receive focusing process of an ultrasound imaging system. When the signal from the image point is focused, the channel signals have the same DC value across the channels. However, even after echoes from outside an imaging point are focused, they are manifested as having different spatial frequencies depending on their incident angles. Therefore, after the receive focusing delay time is applied, 2-D Fourier Transform is performed on the time-channel data to separate the DC component and other frequency components in the spectral domain, and the weighting value is defined using the ratio of the two values. The side lobe and grating lobe were suppressed by multiplying the ultrasound image by a weighting value. Ultrasound images with a frequency of 5 MHz were simulated in a 64-channel linear array. The grating lobe appearing in the ultrasound image was completely removed by applying the proposed method. In addition, the side lobe was reduced and the lateral resolution was greatly increased. Results of computer simulation on a human organ mimicking image show that the proposed method can aid in better lesion diagnosis by increasing the image contrast.

Symmetric-Invariant Boundary Image Matching Based on Time-Series Data (시계열 데이터 기반의 대칭-불변 윤곽선 이미지 매칭)

  • Lee, Sanghun;Bang, Junsang;Moon, Seongwoo;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.431-438
    • /
    • 2015
  • In this paper we address the symmetric-invariant problem in boundary image matching. Supporting symmetric transformation is an important factor in boundary image matching to get more intuitive and more accurate matching results. However, the previous boundary image matching handled rotation transformation only without considering symmetric transformation. In this paper, we propose symmetric-invariant boundary image matching which supports the symmetric transformation as well as the rotation transformation. For this, we define the concept of image symmetry and formally prove that rotation-invariant matching of using a symmetric image always returns the same result for every symmetric angle. For efficient symmetric transformation, we also present how to efficiently extract the symmetric time-series from an image boundary. Finally, we formally prove that our symmetric-invariant matching produces the same result for two approaches: one is using the time-series extracted from the symmetric image; another is using the time-series directly obtained from the original image time-series by symmetric transformation. Experimental results show that the proposed symmetric-invariant boundary image matching obtains more accurate and intuitive results than the previous rotation-invariant boundary image matching. These results mean that our symmetric-invariant solution is an excellent approach that solves the image symmetry problem in time-series domain.

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

Big Data Management System for Biomedical Images to Improve Short-term and Long-term Storage

  • Qamar, Shamweel;Kim, Eun Sung;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.66-71
    • /
    • 2019
  • In digital pathology, an electronic system in the biomedical domain storage of the files is a big constrain and because all the analysis and annotation takes place at every user-end manually, it becomes even harder to manage the data that is being shared inside an enterprise. Therefore, we need such a storage system which is not only big enough to store all the data but also manage it and making communication of that data much easier without losing its true from. A virtual server setup is one of those techniques which can solve this issue. We set a main server which is the main storage for all the virtual machines(that are being used at user-end) and that main server is controlled through a hypervisor so that if we want to make changes in storage overall or the main server in itself, it could be reached remotely from anywhere by just using the server's IP address. The server in our case includes XML-RPC based API which are transmitted between computers using HTTP protocol. JAVA API connects to HTTP/HTTPS protocol through JAVA Runtime Environment and exists on top of other SDK web services for the productivity boost of the running application. To manage the server easily, we use Tkinter library to develop the GUI and pmw magawidgets library which is also utilized through Tkinter. For managing, monitoring and performing operations on virtual machines, we use Python binding to XML-RPC based API. After all these settings, we approach to make the system user friendly by making GUI of the main server. Using that GUI, user can perform administrative functions like restart, suspend or resume a virtual machine. They can also logon to the slave host of the pool in case of emergency and if needed, they can also filter virtual machine by the host. Network monitoring can be performed on multiple virtual machines at same time in order to detect any loss of network connectivity.

Analysis of Saturation and Ground Water Level at Embankment by TDR Sensor (TDR센서를 이용한 제방의 포화도 및 지하수위 해석)

  • Kim, Ki-Young;Han, Heui-Soo;Lee, Jae-Ho;Park, Min-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • The measured ground water behavior by TDR (time domain reflectometer) sensors were analyzed by the data filtering technique such as moving average method and Fourier transform, and the ground water level and unsaturated zone were tried to be determined numerically. At first, the variation of TDR data according to the saturation degree was measured by lab test, which is translated as a function of saturation degree. Then, changes of ground water level and lateral seepage in field conditions were simulated using acrylic pipe, and the measured data were analyzed to make calibration curve. Furthermore, TDR sensors were installed into the in-situ embankment to insure the field application. The saturation degree, unsaturated and dried zones were determined from the measured data.

An Smart Greenhouse Automation System Applying Moving Average Algorithm (이동평균 알고리즘을 적용한 스마트 그린하우스 자동제어 시스템)

  • Basnet, Barun;Lee, Injae;Noh, Myungjun;Chun, Hyunjun;Jaffari, Aman;Bang, Junho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1755-1760
    • /
    • 2016
  • Automation of greenhouses has proved to be extremely helpful in maximizing crop yields and minimizing labor costs. The optimum conditions for cultivating plants are regularly maintained by the use of programmed sensors and actuators with constant monitoring of the system. In this paper, we have designed a prototype of a smart greenhouse using Arduino microcontroller, simple yet improved in feedbacks and algorithms. Only three important microclimatic parameters namely moisture level, temperature and light are taken into consideration for the design of the system. Signals acquired from the sensors are first isolated and filtered to reduce noise before it is processed by Arduino. With the help of LabVIEW program, Time domain analysis and Fast Fourier Transform (FFT) of the acquired signals are done to analyze the waveform. Especially, for smoothing the outlying data digitally, Moving average algorithm is designed. With the implement of this algorithm, variations in the sensed data which could occur from rapidly changing environment or imprecise sensors, could be largely smoothed and stable output could be created. Also, actuators are controlled with constant feedbacks to ensure desired conditions are always met. Lastly, data is constantly acquired by the use of Data Acquisition Hardware and can be viewed through PC or Smart devices for monitoring purposes.

Inductive Classification of Multi-Spectral Threat Data for Autonomous Situation Awareness (자율적인 상황인식을 위한 다중센서 위협데이타의 귀납적 분류)

  • Jeong, Yong-Woong;Noh, Sang-Uk;Go, Eun-Kyoung;Jeong, Un-Seob
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • To build autonomous agents who can make a decision on behalf of humans in time-critical complex environments, the formulation of operational knowledge base could be essential. This paper proposes the methodology of how to formulate the knowledge base and evaluates it in a practical application domain. We analyze threat data received from the multiple sensors of Aircraft Survivability Equipment(ASE) for Korean helicopters, and integrate the threat data into the inductive model through compilation technique which extracts features of the threat data and relations among them. The compiled protocols of state-action rules can be implemented as the brain of the ASE. They can reduce the amounts of reasoning, and endow the autonomous agents with reactivity and flexibility. We report experimental results that demonstrate the distinctive and predictive patterns of threats in simulated battlefield settings, and show the potential of compilation methods for the successful detection of threat systems.

Development of Gesture-allowed Electronic Ink Editor (제스쳐 허용 전자 잉크 에디터의 개발)

  • 조미경;오암석
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.1054-1061
    • /
    • 2003
  • Electronic ink is multimedia data that have emerged from the development of pen-based computers such as PDAs whose major input device is a stylus pen. Recently with the development and supply of pen-based mobile computers, the necessity of data processing techniques of electronic ink has increased. Techniques to develop a gesture-allowed text editor in electronic ink domain were studied in this paper. Gesture and electronic ink data are a promising feature of pen-based user interface, but they have not yet been fully exploited. A new gesture recognition algorithm to identify pen gestures and a segmentation method for electronic ink to execute gesture commands were proposed. An electronic ink editor, called GesEdit was developed using proposed algorithms. The gesture recognition algorithm is based on eight features of input strokes. Convex hull and input time have been used to segment electronic ink data into GC(Gesture Components) unit. A variety of experiments by ten people showed that the average recognition rate reached 99.6% for nine gestures.

  • PDF