The Transactions of the Korea Information Processing Society
/
v.13
no.2
/
pp.41-47
/
2024
When there were disparities in performance between models trained in the time and frequency domains, even after conducting an ensemble, we observed that the performance of the ensemble was compromised due to imbalances in the individual model performances. Therefore, this paper proposes a leakage detection technique to enhance the accuracy of pipeline leakage detection through a step-wise learning approach that extracts features from both the time and frequency domains and integrates them. This method involves a two-step learning process. In the Stage 1, independent model training is conducted in the time and frequency domains to effectively extract crucial features from the provided data in each domain. In Stage 2, the pre-trained models were utilized by removing their respective classifiers. Subsequently, the features from both domains were fused, and a new classifier was added for retraining. The proposed transfer learning-based feature fusion technique in this paper performs model training by integrating features extracted from the time and frequency domains. This integration exploits the complementary nature of features from both domains, allowing the model to leverage diverse information. As a result, it achieved a high accuracy of 99.88%, demonstrating outstanding performance in pipeline leakage detection.
Kim, Kyu-Lee;Choi, Jin-Sook;Jang, Yong-Lee;Lee, Hae-Woo;Sim, Hyun-Bo
Sleep Medicine and Psychophysiology
/
v.24
no.1
/
pp.46-54
/
2017
Objectives: Domestic violence is related to many psychiatric diseases, such as depression, anxiety disorder, and PTSD. Heart rate variability (HRV) is an index of autonomic control of the heart and is related to cardiovascular and emotional disorders. Although there have been some studies on the effects of domestic violence on women's mental health, relatively little information is available on HRV in this population. The aim of this study is to investigate demographic data, psychological features, and HRV in female victims of domestic violence and difference between Korean and foreign female victims. Methods: A total of 210 female victims of domestic violence (166 Korean women and 44 foreign women) were recruited for this study. Psychological symptoms were measured using the Hamilton Rating Scale for Anxiety (HAM-A), Hamilton Rating Scale for Depression (HAM-D), and Impact of Event Scale-Revised (IES-R). HRV measures were assessed by time-domain and frequency-domain analyses. Results: The mean score of HAM-A was 13.81, that of HAM-D was 12.92, and that of IES-R was 33.61 ; there were no significant differences between Korean and foreign women in these measures. In HRV time domain analyses, approximate entropy (ApEn) was significantly increased in foreign women compared to the Korean women. The square root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD) was significantly decreased in foreign women compared to Korean women. There were no significant differences in the other HRV variables between Korean and foreign women. Conclusion: Female victims of domestic violence in Korea are associated with depression, anxiety, and PTSD symptoms. The physiologic factors of a female victim's nationality could be related to higher ApEn and lower RMSSD in foreign female victims. These findings have important implications for future study to study the relationships among ethnic and environmental factors and HRV variables.
To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.
Journal of The Korean Association For Science Education
/
v.40
no.5
/
pp.515-529
/
2020
'Scientific inquiry experiments', which was newly created subjects in the 2015 revised curriculum, was expected in the aspect of learning science and developing core competences through science practices. Based on changed view of evaluation, assessments of a practice-centered subject 'Scientific inquiry experiments' should be try to conducted in various ways, but many challenges were reported. In this study, through analysis of current status of assessment of the subject, we intended to find the way of conducting and supporting 'Scientific inquiry experiments'. We collected assessment materials and explanatory description about them from 25 teachers who taught 'Scientific inquiry experiments' in 2018 and 2019. And we analyzed the cases with framework which were consisted with three main categories: elements, standards, methods of assessments. Also, we investigated how the results of assessment were utilized. For the validity, we requested verification of the results of our data analysis to experts of science education and science teachers. From them, we also collected their opinions about our analysis. As a result of the study, teachers assessed some elements of inquiry skills such as 'analysis and interpreting the data', 'conducting inquiry' more than others which were closely related to what subject-matter the teachers used to organized inquiry program with. In the aspect of domain of assessments, though cognitive domain and affective domain as well as skills were evaluated, we also found that the assessment of those domains had some limitation. In terms of standard of assessment, the goals of assessment were presented in most cases, but there were relatively few cases which had the specific criteria and the stepwise statements of expected performance of students. The time and subject of the assessment were mainly post-class and teachers, and others such as in-class assessments, peer-assessments were used only in specific contexts. In all cases, the results of assessments used for calculating students' grade, but in some cases, we could observe that the results used for improving teaching and feedback for students. Based on these results, we discussed how to support the assessments of 'Scientific inquiry experiments'.
Journal of the Korean Society for Marine Environment & Energy
/
v.16
no.1
/
pp.36-41
/
2013
In this paper time series wave data are simulated using wave spectrum with random phases of the wave signal. The simulated wave signals are used to study the effect of the sampling rate on the ocean wave characteristics. Effect of sampling rate on wave data which include extreme wave such as freak waves are examined and various wave characteristics including abnormality index (AI), kurtosis of wave profile and maximum wave height are examined. Various wave heights are decreased as the sampling rate decreases. The zero-th moment of the wave spectrum does not affect much on the sampling rate but the second moment are greately affected on the sampling rate. The error due to the sampling rate is decreases as the wave period increases. The error in significant wave height based on the wave spectrum $H_s$ is smaller than that on the time domain method $H_{1/3}$. AI index and kurtosis of wave profile do not deviate much from the exact date as long as the sampling rate is greater than 1 Hz. Ocean wave measurement with the sampling frequency higher than 1 Hz will result the error less than 5% in estimating the height of extreme waves.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.2
/
pp.744-750
/
2013
This study is to collect a basic data of how Cardiopulmonary Resuscitation (CPR) procedure can influence to cardiac arrest patient with and without the Depth Device during the average transport time period. The data has achieved by comparing result sheet of CPR procedure by hands only versus with Depth Device by twenty 1st and 2nd class Emergency Medical Technician (EMT) from five different fire stations in city of Chong-Ju, and twenty Emergency Rescue major students who completed the BLS provide course. The experiment participators experienced loss of compression depth and rate increase over time. However, the CPR procedure with Depth Device shows that both EMT and students to allow maintaining both the compression depth and rate. The experiment leaves a positive result for CPR operators and considers being valuable domain for cardiac arrest patient.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.10
/
pp.15-23
/
2016
To support the telematics and infotainment services, vehicle-to-everything (V2X) communication requires a robust and reliable network. To do this, the 3rd Generation Partnership Project (3GPP) has recently developed V2X communication. For reliable communication, accurate channel estimation should be done. However, because vehicle speed is very fast, radio channel is rapidly changed with time. Therefore, it is difficult to accurately estimate the channel. In this paper, we propose the new linear minimum mean square error (LMMSE) channel interpolation scheme based on the Long Term Evolution (LTE) sidelink system in vehicle-to-vehicle (V2V) environments. In our proposed reduced decision error (RDE) channel estimation scheme, LMMSE channel estimation is applied in the pilot symbol, and then in the data symbol, smoothing and LMMSE channel interpolation scheme is applied. After that, time and frequency domain averaging are applied to obtain the whole channel frequency response. In addition, the LMMSE equalizer of the receiver side can reduce the error propagation due to the decision error. Therefore, it is possible to detect the reliable data. Analysis and simulation results demonstrate that the proposed scheme outperforms currently conventional schemes in normalized mean square error (NMSE) and bit error rate (BER).
Journal of the Korean Society for Nondestructive Testing
/
v.21
no.4
/
pp.398-405
/
2001
The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.
Journal of Society of Occupational Therapy for the Aged and Dementia
/
v.12
no.2
/
pp.57-65
/
2018
Objective : The purpose of this study was to compare the demographic characteristics, health and quality of life between general adults and adults living with dementia. Method : The data were collected using raw data of the 2016 community health survey and compared between 2,592 adults living with dementia patients and 225,840 general adults. health were assessed for sleep time, stress level, depression, and subjective health status, and quality of life was measured by EQ-5D. Result : In comparison of demographic characteristics, age and family number of adults living with dementia patients were significantly higher than general adults (p<.001), income and eduation levels were low (p<.001), and marital status was higher rate of living with spouse (p<.05). In comparison of health status, adults living with dementia patients were significantly longer in sleep time than the general adults (p<.001), and stress level was higher (p<.001), the percentage of experience of depression was higher (p<.001), and the subjective health status was worse (p<.001). Adults living with dementia patients were significantly lower in quality of life total score and all sub-domain than general adults (p<.001). Conclusion : Based on the results of this study, it is necessary to seek ways to improve the health and quality of life of dementia patients' families.
Korean Journal of Agricultural and Forest Meteorology
/
v.23
no.4
/
pp.222-234
/
2021
Airborne-pests can be introduced into Korea from overseas areas by wind, which can cause considerable damage to major crops. Meteorological models have been used to estimate the wind trajectories of airborne insects. The objective of this study is to analyze the effect of input settings on the prediction of areas where airborne pests arrive by wind. The wind trajectories were predicted using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The HYSPLIT model was used to track the wind dispersal path of particles under the assumption that brown plant hopper (Nilaparvata lugens) was introduced into Korea from sites where the pest was reported in China. Meteorological input data including instantaneous and average wind speed were generated using meso-scale numerical weather model outputs for the domain where China, Korea, and Japan were included. In addition, the calculation time intervals were set to 1, 30, and 60 minutes for the wind trajectory calculation during early June in 2019 and 2020. It was found that the use of instantaneous and average wind speed data resulted in a considerably large difference between the arrival areas of airborne pests. In contrast, the spatial distribution of arrival areas had a relatively high degree of similarity when the time intervals were set to be 1 minute. Furthermore, these dispersal patterns predicted using the instantaneous wind speed were similar to the regions where the given pest was observed in Korea. These results suggest that the impact assessment of input settings on wind trajectory prediction would be needed to improve the reliability of an approach to predict regions where airborne-pest could be introduced.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.