• Title/Summary/Keyword: time division duplex

Search Result 97, Processing Time 0.028 seconds

Time Slot Allocation for CDMA/TDD Indoor Wireless Systems

  • Lee Chae Y.;Sung Ki Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.144-151
    • /
    • 2002
  • Future wireless communication systems are expected to provide a broad range of multimedia services in which the asymmetry of traffic load between uplink and downlink is a significant feature. The rode division multiple access system with tune division duplex mode (CDMA/TDD) is a good solution to cope with the traffic asymmetry problem. However. the TDD system is subject to inter-cell interference compared to frequency division duplex (FDD) system. Since both uplink and downlink share the same frequency in TDD. uplink and downlink may interfere each other especially when neighboring cells require different rates of asymmetry. Thus, time slot allocation for tells is an important issue in TDD. In this paper. we propose a genetic algorithm based time slot allocation scheme which maximizes the residual system capacity. The proposed scheme allows that each cell employ different level of uplink/downlink asymmetry and satisfies the interference requirement.

  • PDF

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

Design of MJPEG Encoder for FH/TDD Multiple Transmissions (FH/TDD 다중전송용 MJPEG 부호화기 설계)

  • Kang, Min-Goo;Sonh, Seung-Il
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.45-50
    • /
    • 2011
  • In this paper, the encoding time delay of FH/TDD(Frequency Hopping/Time Division Duplex) based Motion JPEG image compression CODEC is analyzed for radio video transmissions of multi-camera systems in a vehicle. And, Synchronized connection of minimum channel collision is designed with synchronized shift and access according to channel status for Motion JPEG based FH/TDD multiple access.

An Efficient Downlink Scheduling Scheme Using Prediction of Channel State in an OFDMA-TDD System (OFDMA-TDD 시스템에서 채널상태 예측을 이용한 효율적인 하향링크 스케줄링 기법)

  • Kim Se-Jin;Won Jeong-Jae;Lee Hyong-Woo;Cho Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.451-458
    • /
    • 2006
  • In this paper, we propose a novel scheduling algorithm for downlink transmission which utilizes scarce wireless resource efficiently in an Orthogonal Frequency Division Multiple Access/Time Division Duplex system. Scheduling schemes which exploit channel information between a Base Station and terminals have been proposed recently for improved performance. Time series analysis is used to estimate the channel state of mobile terminals. The predicted information is then used for prioritized scheduling of downlink transmissions for improved throughput, delay and jitter performance. Through simulation, we show that the total throughput and mean delay of the proposed scheduling algorithm are improved compared with those of the Proportional Fairness and Maximum Carrier to Interference Ratio schemes.

Performance of CDMA/TDD in Multimode Scenario for Dual-band Operation (이중대역 동작을 위한 멀티모드 시나리오에서 CDMA/TDD의 성능)

  • Oh, Hyeong-Joo;Hwang, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.32-36
    • /
    • 2008
  • In this paper, we investigate the capacity of CDMA/TDD in the inner zone of multimode scenario with dual-band operation where high frequency band is used for TDD in the inner zone and lower frequency band is utilized for FDD in the outer zone. The effects of various system parameters such as cell radius, date rate, and time slot allocation are analyzed.

Virtual-Channel Division Duplex via Dual Coding (이중 부호화를 이용한 가상 채널에서의 양방 통신 기법)

  • Ju, Hyung-Sik;Lee, Sung-Eun;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • We propose a new duplex which does not require guard resources in MIMO environments. In the proposed duplex, two virtual channels in spatial domain are generated by preceding and postcoding MIMO channels, not to use guard resources in either the time or frequency domain. The capacity can be improved by properly selecting precoder and postcoder. We show the improved capacity of the proposed duplex outperforms conventional duplexes even without guard resources.

Ethernet-Based Avionic Databus and Time-Space Partition Switch Design

  • Li, Jian;Yao, Jianguo;Huang, Dongshan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.286-295
    • /
    • 2015
  • Avionic databuses fulfill a critical function in the connection and communication of aircraft components and functions such as flight-control, navigation, and monitoring. Ethernet-based avionic databuses have become the mainstream for large aircraft owning to their advantages of full-duplex communication with high bandwidth, low latency, low packet-loss, and low cost. As a new generation aviation network communication standard, avionics full-duplex switched ethernet (AFDX) adopted concepts from the telecom standard, asynchronous transfer mode (ATM). In this technology, the switches are the key devices influencing the overall performance. This paper reviews the avionic databus with emphasis on the switch architecture classifications. Based on a comparison, analysis, and discussion of the different switch architectures, we propose a new avionic switch design based on a time-division switch fabric for high flexibility and scalability. This also merges the design concept of space-partition switch fabric to achieve reliability and predictability. The new switch architecture, called space partitioned shared memory switch (SPSMS), isolates the memory space for each output port. This can reduce the competition for resources and avoid conflicts, decrease the packet forwarding latency through the switch, and reduce the packet loss rate. A simulation of the architecture with optimized network engineering tools (OPNET) confirms the efficiency and significant performance improvement over a classic shared memory switch, in terms of overall packet latency, queuing delay, and queue size.

Optimal Control Method of Directional Antenna Beam (지향성 안테나 빔의 최적 제어 방식)

  • Hyun, Kyo-Hwan;Joeng, Seong-Boo;Kim, Joo-Woong;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.717-720
    • /
    • 2007
  • This paper presents a novel scheme that quickly searches for the optimal direction of multiple directional antennas, and locks on to it for high-speed millimeter wavelength transmissions, when communications to another antenna directional are disconnected. The proposed method utilizes a modified genetic algorithm, which selects a superior initial group through preprocessing in order to solve the local solution in genetic algorithm. TDD (Time Division Duplex) is utilized as the transfer method and data controller for the antenna. Once the initial communication is completed for the specific number of individuals, no longer antenna's data will be transmitted nil each station processes GA in order to produce the next generation. After reproduction, individuals of the next generation become the data, and communication between each station is made again. In order to verify the effectiveness of the proposed system, simulation results of 1:1, 1:2, 1:5 directional antennas and experiment results of 1:1 directionalantennas confirmed the efficiency of the proposed method. The 16bit split is 8bit, but it has similar performance as 16bit gene.

  • PDF

Design of Time-Division Half-Duplex Estimate and Forward Relaying System (시분할 반이중 추정 후 전달 릴레이 시스템 설계)

  • Hwang, In-Ho;Kim, Jee-Young;Lee, Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.227-238
    • /
    • 2012
  • In this paper, we propose a practical time-division half-duplex Estimate and Forward (EF) relaying protocol. The conventional EF relaying protocol works well only when the relay node is near the destination node. The proposed EF relaying protocol, however, determines adaptively relay parameters such as the quantization level of relay node and the power allocation between source and relay nodes according to the channel conditions. By doing so, the proposed EF relaying protocol provides low probability of bit error even when the relay node is far from the destination node. Consequently, the proposed EF protocol is suitable for the mobile relay systems. It is shown by simulations that the proposed EF relaying protocol shows lower bit error rate for all relay positions than a conventional EF protocol.