• Title/Summary/Keyword: time Petri nets

Search Result 65, Processing Time 0.021 seconds

Security Verification of Wireless Remote Control System Using CPN (CPN을 이용한 무선원격제어시스템의 안전성 검증)

  • 이문구
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.81-90
    • /
    • 2003
  • Existing web-based system management software solutions show some limitations in time and space. Moreover, they possess such as shortcomings unreliable error message announcements and difficulties with real-time assistance suppers and emergency measures. In order to solve these deficiencies, Wireless Remote Control System was designed and implemented. Wireless Remote Control System is able to manage and monitor remote systems by using mobile communication devices for instantaneous control. The implementation of Wireless Remote Control System leads to these security Problems as well as solutions to aforementioned issues with existing web-based system management software solutions. Therefore, this paper has focused on the security matters related to Wireless Remote Control System. The designed security functions include mobile device user authentication and target system access control. For security verification of these security functions introduced CPN(Coloured Petri Nets) which is capable of expressing every possible state for each stage. And then in this paper was verified its security through PI(Place Invariant) based on CPN(Coloured Petri Nets). The CPN expression and analysis method of the proposed security function can also be a useful method for analyzing other services in the future.

Intelligent Update of Environment Model in Dynamic Environments through Generalized Stochastic Petri Net (추계적 페트리넷을 통한 동적 환경에서의 지능적인 환경정보의 갱신)

  • Park, Joong-Tae;Lee, Yong-Ju;Song, Jae-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.181-183
    • /
    • 2006
  • This paper proposes an intelligent decision framework for update of the environment model using GSPN(generalized stochastic petri nets). The GSPN has several advantages over direct use of the Markov Process. The modeling, analysis, and performance evaluation are conducted on the mathematical basis. By adopting the probabilistic approach, our decision framework helps the robot to decide the time to update the map. The robot navigates autonomously for a long time in dynamic environments. Experimental results show that the proposed scheme is useful for service robots which work semi-permanently and improves dependability of navigation in dynamic environments.

  • PDF

Polynomial Time Solvability of Liveness Problem of Siphon Containing Circuit Nets

  • Ohta, Atsushi;Tsuji, Kohkichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.971-974
    • /
    • 2002
  • Petri net is an effective modeling tool for concurrent systems. Liveness problem is one of analysis problems in Petri net theory verifying whether the system is free from any local deadlocks. It is well known that computational complexity of liveness problem of general Petri net is deterministic exponential space. Some subclasses, such as marked graph and free choice net, are suggested where liveness problem is verified in less complexity. This paper studies liveness of siphon containing circuit (SCC) net. Liveness condition based on algebraic inequalities is shown. Then polynomial time decidability of liveness of SCC net is derived, if the given net is known to be an SCC net a priori.

  • PDF

An Extended I-O Modeling Methodology based on FSM (유한상태기계에 기반한 확장된 I-O 모델링 방법론)

  • Oh, Soo-Yeon;Wang, Gi-Nam;Kim, Ki-Hyung;Kim, Kangseok
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Recently manufacturing companies have used PLC control programs popularly for their automated production systems. Since the life cycle of production process is not so long, the change of the production lines occur frequently. Most of changes happen with modification of the position information and control process of the equipment. PLC control program is also modified based on the fundamental process. Therefore, to verify new PLC program by configuring virtual space according to real environment is needed. In this paper we show a logical modeling method, based on Timed-FSA useful for sequence control and dead-lock prevention. There is a problem wasting user's labor and time when defining a variety of states in a device. To overcome this problem, we propose an extended I-O model based on existing methods by adding a token concept of Petri Nets. Also we will show the usability of the extended I-O modeling through user study.

Timed Petri Net Based Approach for Elevator Group Controls

  • Cho, Young-Cheol;Zavarin Gagov;Kwon, Wook-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.121-129
    • /
    • 2000
  • In this paper, an optimal group control for elevator systems is proposed with timed Petri net based approach. Elevator system is modeled by time Petri nets and hall call response times are estimated with moment generating functions (MGFs) methos, which is applicable to real traffic patterns. Two assignment policies are proposed to satisfy the demands of passengers(i.e. hall/car calls) and to handle exceptional situations. In addition, optimal algorithms are implementated to minimize cost functions. THe performances of the elevator system employing the proposed algorithms are compared with each others in ways of several performance measures by a computer simulation.

  • PDF

Design of the Scheduler using the Division Algorithm Based on the Time Petri net (타임 패트리넷 기반의 분할 알고리즘을 이용한 스케쥴러 설계)

  • 송유진;이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.13-24
    • /
    • 2003
  • In this study, we propose a scheduling analysis method of the Flexible management system using the transitive matrix. The Scheduling problem is a combination-optimization problem basically, and a complexity is increased exponentially for a size of the problem. To reduce an increase of a complexity, we define that the basic unit of concurrency (short BUC) is a set of control flows based on behavioral properties in the net. And we propose an algorithm to divide original system into some BUC. To sum up, we divide a petri net model of the Flexible management system Into the basic unit of concurrency through the division algorithm using the transitive matrix. Then we apply it to the division-scheduling algorithm to find an efficient scheduling. Finally, we verify its efficiency with an example.

  • PDF

Reliability Analysis of Dual-Channel CAN bus for Submarine Combat System (잠수함 전투체계를 위한 이중채널 CAN 버스의 신뢰도 분석)

  • Song, Moogeun;Kim, Eunro;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1170-1178
    • /
    • 2013
  • Thanks to various benefits, low-cost real-time communication networks so called fieldbus have been widely used in many industrial applications including military systems, such as aircrafts, submarines, and robots. This paper presents a reliability analysis of dual-channel CAN(Controller Area Network) fieldbus which is used for controlling various equipment of submarine combat system. A submarine combat system playing a critical role to the success of missions and survivability consists of various devices including sensors/actuators and computers. Since a communication network for submarine combat system must satisfy an extremely high level of reliability, a dual channel technique is commonly adopted. In this paper, a Petri Net based reliability model for dual-channel CAN is discussed. A reliability model called generalized stochastic Petri Nets (GSPN) is built by utilizing the information on physical faults with CAN. The effectiveness of the proposed model is analyzed in terms of unreliability with respect to failure rate and repair rate.

Dynamic Incidence Matrix Representation of Timed Petri Nets and Its Applications for Performance Analysis

  • Shon, J.G.;Hwang, C.S.;Baik, D.K.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.128-147
    • /
    • 1991
  • We propose a dynamic incidence matrix (DIM) for reflecting states and time conditions of a timed Petri net (TPN) explicitly. Since a DIM consists of a conventional incidence matrix, two time-related vectors and two state-related vectors, we can get the advantages inherent in the conventional incidence matrix of describing a static structure of a system as well as another advantage of expressing time dependent state transitions. We introduce an algorithm providing the DIM with a state transition mechanism. Because the algorithm is, in fact, an algorithmic model for discrete event simulation of TPN models, we provide a theoretical basis of model transformation of a TPN model into a DEVS(Discrete Event system Specification) model. By executing the algorithm we can carry out performance analysis of computer communication protocols which are represented TPN models.

  • PDF

A Study of Cyclic Scheduling Analysis in FMS Based on the Transitive Matrix (추이적 행렬을 이용한 유연생산시스템의 순환 스케쥴링 분석)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.57-68
    • /
    • 2002
  • The analysis of the cyclic scheduling problem in FMS using the transitive matrix has been proposed. Since the transitive matrix may explain all the relations between the places and transitions, we propose an algorithm to get good solution after slicing off some subnets from the original net based on machines operations. For analyzing the schedule problem, we considered two time functions such as produce time and waiting time using the P-invariant. In addition, we are shown the effectiveness of proposed algorithm after comparing with unfolding algorithms.

  • PDF

Timed Petri-nets Modeling and Performance Evaluation of Modular Cell TFT-LCD Manufacturing System (모듈러 셀 TFT-LCD 제조시스템의 시간 페트리네트 모델링과 성능평가)

  • Lee, Sang-Moon;Jang, Seok-Ho;Kang, Sin-Jun;Woo, Kwang-Bang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1303-1310
    • /
    • 1999
  • In this paper, the Timed Petri-Nets(TPN) modeling of Modular Cell Manufacturing Systems(MCMS) was investigated to overcome the limit of batch mode operation, which has been one of the most popular manufacturing types to produce an extensive industrial output and to be able to adopt to suitable and quickly changing manufacturing environments. A model of the MCMS was developed in reference to the actual TFT-LCD manufacturing system. TFT-LCD manufacturing system is not mass-productive in batch mode, but it operates in the form of MCMS which consists of a sequence of several cells with four processes of operation, including those of color filter(C/F), TFT, cell, and module. The cell process is further regrouped in those of Front-End and Back-End. For the Back-End cell process, it is reconstructed into a virtual model, consisting of three cells. The TPN modeling encompasses those properties, such as states and operations of machines, the number of buffers, and the processing time. The performance of the modeling was further examined in terms of scheduling system. The productivity in each cells was examined with respect to the change of failure rate of the cell machines and Automatic Guided Vehicles(AGV) using simulation by TPN.

  • PDF