• Title/Summary/Keyword: tilt angle

Search Result 623, Processing Time 0.025 seconds

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

Correlations of Forward Head Posture to Heart Rate Variability and Standing Posture Balance Factors (전방머리자세의 정도와 심박변이도 및 기립자세 균형요소와의 상관관계)

  • Ki, Sung-Hoon;Song, Yun-Kyung
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.4
    • /
    • pp.163-176
    • /
    • 2014
  • Objectives To investigate the relationship of forward head posture to heart rate variability and standing posture (pelvic tilt, knee flexion, calcaneal eversion). Methods In the present study, thirty two subjects were recruited by convenience sampling. The forward head posture was measured via the craniovertebral (CV) angle. The pelvic tilt angle, the knee flexion angle, the calcaneal eversion angle, and the heart rate variability were measured. The correlations of forward head posture to heart rate variability and standing posture (pelvic tilt, knee flexion, calcaneal eversion) were analyzed. Results In the present results, there was a significant negative correlation between X-ray CV angle and other regions except the headache. There was a weak positive correlation between Posture CV angle and SDNN. Significant positive correlation was found between KFA and difference between Lt. & Rt. CEA. Significant weak negative correlation was found between SDNN and difference between Lt. & Rt. CEA. Conclusions Biomechanical associated with physical pain and heart rate variability, and it is related to the forward head posture changes and also suggest that clinical care is needed for this.

Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles (틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

Estimation of Road Surface Condition and Tilt Angle to Improve the Safety of Mobility Aids for the Elderly (노인용 보행보조기의 안전성 향상을 위한 노면 상태 및 기울기 추정)

  • Park, Gi-Dong;Kim, Jong-Hwa;Choi, Jin-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2022
  • This paper proposes a method for estimating the road surface condition and tilt angle using an inertial measurement unit (IMU) to improve the safety in the use of mobility aids for the elderly. The measurements of the accelerometers of the IMU usually include the accelerations caused by not only the gravitational force but also linear and rotational motions. Thus, the gravitational accelerations are first extracted using several physical constraints and then incorporated into the Kalman filter to estimate the tilt angle. In addition, because the magnitudes of the accelerations produced by the rotational motions (roll and pitch motions) vary with the road surface condition, a criterion based on such accelerations is presented to classify the condition of the road surface. The obtained road surface condition and tilt angle are finally combined to provide the safety information (e.g., safe, warning, and danger) for the user to improve the walking safety. Experiments were carried out and the results showed that the proposed method can provide the condition of the road surface, the tilt of the road surface, and the safety information correctly.

Change of Radiologic Index of Foot according to Radiation Projection Angle: A Study Using Phantom Foot (방사선 투과 각도에 따른 족부 방사선 지표의 변화: Phantom Foot을 이용한 연구)

  • Kim, Eo Jin;Seo, Sang Gyo;Lee, Dong Yeon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.4
    • /
    • pp.165-170
    • /
    • 2015
  • Purpose: The purpose of this study is to analyze the measurement differences of simple radiographs according to radiation projection angle using a phantom and to propose methods for objective analysis of simple radiographs. Materials and Methods: We took simple radiographs with different projection angles using a C-arm image intensifier and measured five parameters of the foot on the simple radiographic images. Five parameters include lateral tibiocalcaneal angle, lateral talocalcaneal angle, naviculocuboid overlap, lateral talo-first metatarsal angle, and lateral calcaneo-first metatarsal angle. Intraobserver and interobserver reliability were verified, and then intraclass correlations of parameters were analyzed. Results: Radiographic parameters of the foot showed high intraobserver and interobserver reliability. Lateral tibiocalcaneal angle has a strong negative linear relationship with rotation and a moderate negative linear relationship with tilt. Lateral talocalcaneal angle has a moderate positive linear relationship with rotation and a strong positive linear relationship with tilt. Naviculocuboid overlap has a strong positive linear relationship with rotation and a moderate positive linear relationship with tilt. Lateral talo-first metatarsal angle does not have a linear relationship with rotation and a moderate negative linear relationship with tilt. Lateral calcaneo-first metatarsal angle has a moderate positive linear relationship with rotation and tilt. Conclusion: More precise evaluation of the foot with a simple radiograph can be performed by understanding the changes of radiographic parameters according to radiation projection angle.

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 가공경로와 공구기울임 방향의 선정)

  • 임태순;이유하;이득우;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.155-160
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries has brought new technological challenges, rebated to the growing complexity of products and the new geometry of the models. High speed milling with a 5-Axis milling machine has been widely used fur 3D sculptured surface parts. When turbine blades are machined by a 5-axis milling, their thin and cantilever shape causes vibrations, deflections and twists. Therefore, the surface roughness and the waviness of the workpiece are not good. In this paper, the effects of cutter orientation and the lead/tilt angle used to machine turbine blades with a 5-axis high speed ball end-milling were investigated to improve geometric accuracy and surface integrity. The experiments were performed using a lead/tilt angle of 15$^{\circ}$ to the workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vortical inward directions. Workpiece deflection, surface roughness and the machined surface were all measured with various cutter orientations such as cutting directions, and lead/tilt angle. The results show that the best cutting strategy for machining turbine blades with a 5-axis milling is horizontal inward direction with a tilt angle.

  • PDF

Target strength estimation by tilt angle and size dependence of rockfish (Sebastes schlegeli) using ex-situ and acoustic scattering model (현수법과 모델을 이용한 조피볼락의 유영자세각과 체장에 따른 음향 후방산란강도)

  • YOON, Euna;KIM, Kiseon;LEE, Intae;JO, Hyeon-Jeong;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.152-159
    • /
    • 2017
  • Rockfish was a commercially important fish specie in marine ranching areas in Korea. To estimate density and biomass of rockfish using acoustic method, target strength (TS) information is required on the species. This study measured TS dependence on tilt angle and size on 14 live rockfish individuals at 38, 70, and, 120 kHz by ex-situ measurement (tethered method) and acoustic scattering model (Krichhoff ray mode, KRM). The swimbladdered angle ranged from 18 to $30^{\circ}$ ($mean{\pm}s.d.=26{\pm}4^{\circ}$). The mean TS for all individuals was highest -35.9 dB of tilt angle $-17^{\circ}$ at 38 kHz, -35.4 dB of tilt angle $-25^{\circ}$ at 70 kHz, and -34.9 dB of tilt angle $-22^{\circ}$ at 120 kHz. The ex-situ TS-total length (TL, cm) relationships were $TS_{38kHz}=20log_{10}(TL)-67.1$, $TS_{70kHz}=20log_{10}(TL)-68.6$, and $TS_{120kHz}=20log_{10}(TL)-69.9$, respectively. The model TS-total length (TL, cm) relationships were $TS_{38kHz}=20log_{10}(TL)-66.4$, $TS_{70kHz}=20log_{10}(TL)-67.0$, $TS_{120kHz}=20log_{10}(TL)-67.0$. The two measurements between the ex-situ TS and KRM model for TS-tilt angle and fish size were found to be significantly correlated.

A Research on Curved Display Comparing to Flat Display Regarding Posture, Tilt Angle, Focusing Area and Satisfaction

  • Ahn, Sung Hee;Jin, Byungki;Kwon, Sanghyun;Yun, Myung Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.191-202
    • /
    • 2014
  • Objective: This study is conducted on the differences between flat and curved displays with respect to location of focused points, posture and satisfaction as well as preferred tilt angles. Background: In order to avoid physical and eye fatigue caused by misplayed sitting posture, many studies have asserted that the display requires appropriate location, size and tilt angle as well as curvature. However, most studies have focused on the work environment and the results are varied in the extent. Method: Eye height data in sitting posture were collected from 30 participants. Participants selected the most comfortable viewing angle within the range from $0^{\circ}$ to $12^{\circ}$ while watching videos for both curved and flat display. Then, physical and eye fatigue and overall satisfaction were subjectively evaluated. Lateral diagram describing viewing display condition was set and used to develop linear models for expecting the preferred tilt angle. Results: Due to sitting in the natural viewing posture rather than upright, the eye height is lowered to about 4.6 centimeters, on average, for both displays showing no significant differences. In contrast, preferred angles for the two displays are significantly different and this can be interpreted that curvature vary the points focused. Two linear models as functions of sitting eye height are developed to expect preferred tilt angle for each display. Based on the result of overall satisfaction evaluation, curved display is statistically better than flat display. Conclusion: The results show that flat and curved displays are significantly different expect for the viewing posture. However, reasons for preferring curved display are not accurately factorized and the linear models are limited in the experiment condition such as size of display, distance between display and viewer and other physical environmental factors. Further studies on curved displays under more various conditions are required. Application: This study can contribute to use of the curved display in various way.

An analysis on the Earth geoid surface variation effect for use of the tilt sensor in celestial navigation system

  • Suk, Byong-Suk;Yoon, Jae-Cheol;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1867-1870
    • /
    • 2005
  • The celestial navigation is one of alternatives to GPS system and can be used as a backup of GPS. In the celestial navigation system using more than two star trackers, the vehicle's ground position can be solved based on the star trackers' attitude information if the vehicle's local vertical or horizontal angle is given. In order to determine accurate ground position of flight vehicle, the high accurate local vertical angle measurement is one of the most important factors for navigation performance. In this paper, the Earth geophysical deflection was analyzed in the assumption of using the modern electrolyte tilt sensor as a local vertical sensor for celestial navigation system. According to the tilt sensor principle, the sensor measures the tilt angle from gravity direction which depends on the Earth geoid surface at a given position. In order to determine the local vertical angle from tilt sensor measurement, the relationship between the direction of gravity and the direction of the Earth center should be analyzed. Using a precision orbit determination software which includes the JGM-3 Earth geoid model, the direction of the Earth center and the direction of gravity are extracted and analyzed. Appling vector inner product and cross product to the both extracted vectors, the magnitude and phase of deflection angle between the direction of gravity and the direction of the Earth center are achieved successfully. And the result shows that the angle differences vary as a function of latitude and altitude. The maximum 0.094$^{circ}$angle difference occurs at 45$^{circ}$latitude in case of 1000 Km altitude condition.

  • PDF

A Calibration Technique for a Two-Axis Magnetic Compass in Telematics Devices

  • Cho, Seong-Yun;Park, Chan-Gook
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.280-288
    • /
    • 2005
  • This paper presents an efficient algorithm for using the two-axis magnetic compass in portable devices. The general magnetic compass module consists of a three-axis magnetic compass and a two-axis inclinometer to calculate tilt-compensated azimuth information. In this paper, the tilt error is compensated using just a two-axis magnetic compass and two-axis accelerometer. The third-axis data of the magnetic compass is estimated using coordinate information that includes the extended dip angle and tilt information. The extended dip angle is estimated during the normalization process. This algorithm can be used to provide the tilt-compensated heading information to small portable devices such as navigation systems, PDAs, cell phones, and so on.

  • PDF