• Title/Summary/Keyword: tidal variation

Search Result 366, Processing Time 0.028 seconds

A Study on the Change of Water Quality in the Vicinity of Mokpo Harbor Due to the Discharges from Yongsan River Estuary Weir and Yongam-Kumho Sea Dike (영산강 하구둑과 영암-금호방조제 방류에 의한 목포항 주변 수역의 수질변화에 관한 연구)

  • 정대득;이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.419-426
    • /
    • 1999
  • It is essential for port planning, coastal zone management and environmental impact study to analyze the variation of current and water quality due to the development of water area and discharged water from estuary barrage and basin etc. Mokpo sea area downstreams from a long river and two large basins, the Yongsan river and Yongam-Kumho basins discharging much of water through water gates for the purpose of flood control and prohibition of salt intrusion to the inland fresh water area. In this study, the numerical calculations were carried out for the analysis of diffusion characteristics due to discharging operation, adapting the results of tidal current simulation ADI methord is applied to the governing equation for the movement of sea water and diffusion and 6-point method to the advection terms of diffusion equation. As the results of this study, it is known that the discharging operation causes increasing and/or decreasing of current velocity and enlarging and/or depressing of pollutant diffusion limits depending on the distance from the discharging gates and the mode of discharging operation. To utilize these result, the linked gate operation and the method increasing exchange of sea water must be considered.

  • PDF

Effect of Temporal Distribution of Rainfall on Water-Surface Level of Sihwa Lake (강우분포유형이 저수지의 홍수위에 미치는 영향 (시화호를 중심으로))

  • Lee, Jong-Kyu;Lee, Jai-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.325-343
    • /
    • 2003
  • In this study, several types of rainfall time distribution of the probabilistic rainfall amount have been applied to the Sihwa Lake, located in Gyounggi Province, Korea and their runoff characteristics, obtained by the Hec-Hms program, according to the rainfall distribution types, were compared and analysed. And then, the influences of the above rainfall distribution types of the highest water level of the reservoir, computed through the reservoir flood routing, were analysed. The tidal variation was considered, performing the flood routing and, in addition, the new program, called “IWSEA”, which can compute the reservoir water level, was developed. To conclude, when the Mononobe type of the rainfall distribution was used, the largest inflow flood discharge into the reservoir was performed and the highest reservoir water level was obtained when the Pilgrim-Cordery type of the rainfall distribution was applied.

Analysis on the Characteristics of Water Quality in Prearranged Saemangeum Area (새만금 예정수역의 수질특성 분석)

  • Lee, Gwang-Ya;Eom, Myeong-Cheol;Jo, Jae-Won;Jeong, Hae-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • Hourly monitoring data from Saemangeum estuary, which is expected to become freshwater, was analyzed to evaluate the water quality characteristics. Higher algal growth at spring season than winter influenced the high ratio of organic nitrogen to total nitrogen and concentration of chemical oxygen demand (COD). About 87.9% and 59.7% of organic nitrogen was observed at winter season and spring season, respectively. Daily salinity analysis at the mouth of two main rivers demonstrated that the Dongjin in river was more influenced by tidal effect and showed higher variation than the Mankyung river. The ratio of nitrogen to phosphorus (N/P ratio) was different with site (estuary versus sea area) and season (winter versus spring) remarkably. The N/P ratio was highest (32.74 ∼ 43.93) at estuary in winter and was lowest (1.78 ∼ 3.06) at sea in spring. The high N/P ratio at estuary area implies that phosphorus can be the limiting nutrient factor for algal growth as in general freshwater river, therefore, water quality management practice considering river characteristics rather might be needed in the Saemangeum estuary. The Saemangeum project is nationally recognized for its environmental issues, and especially water quality concern is a critical factor to make policy decision and further assessment with continued monitoring is strongly recommended.

In situ Particle Size and Volume Concentration of Suspended Sediment in Seomjin River Estuary, Determined by an Optical Instrument,'LISST-100' (현장입도분석기를 이용한 섬진강하구 부유퇴적물의 특성 연구)

  • KIM Seok Yun;LEE Byoung Kwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2004
  • In situ particle size and volume concentration of suspended sediment was measured at the mouth of Seomjin River Estuary In February 2001, using an optical instrument, 'LISST-100'. Time variation of in situ particle size and concentration shows: (1) during ebb tide, Seomjin River supplies relatively fine-grained particles with less-fluctuated, compared to during flood tide, and well-behaved concentrations following the tidal cycle; and (2) during flood tide, relatively coarse-grained particles with highly variable in size distribution and concentration flow upstream from Kwangyang Bay. This explains a poor correlation $(r^{2}=0.10)$ between sediment concentration and beam attenuation coefficient during flood and a high degree of correlation $(r^{2}=0.80)$ during ebb tide. Relatively fine grained and well defined, monotonous size distribution may promote the correlation between concentration and beam attenuation coefficient due to optical homogeneity of particles during ebb tide. Abundance of large aggregates with time-varying size and shape distributions may be mainly responsible for variations in optical properties of the sediment during flood tide, and thus may confound the relationship between the two variables. The difference in particle sizes and shapes between flood and ebb tides can also be observed on SEM images.

A Study on the Charge of Water Quality in the Vicinity of Mokpo Harbor due to the Discharges from Yongsan River Estuary Weir and Yongam-Kumho Sea Dike (영산강 하구둑과 영얌-금호방조제 방류에 의한 목포항 주변 수역의 수질변화에 관한 연구)

  • 정대득;이중우;국승기
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.253-261
    • /
    • 1999
  • It is essential for port planning, coastal zone management and environmental impact study to analyze the variation of current and water quality due to the development of water area and discharged water from the estuary barrage and basin, etc. Mokpo sea area has downstream from a long river and two large basins, the Yongsan river and Yongam-Kumho basins, discharging much of water through water gates for the purpose of flood and prohibition of salt intrusion to the inland fresh water area. In this study, the numerical calculation were carried out for the analysis of diffusion characteristics due to discharging operation, adopting the results of tidal current simulation. ADI method is applied to the governing equation for the movement of sea water and diffusion and 6-point method to the advection terms of diffusion equation. As the results of this study, it is known that the discharging operation causes increasing and/or decreasing of current velocity and enlarging and/or depressing of pollutant diffusion limits depending on the distance from the discharging gates and the modes of discharging operation. To utilize these result, the linked gate operation and the method increasing exchange of sea water must be considered.

Physical Environment Changes in the Keum River Estuary by the Dyke Gate Operation: II. Salinity Structure and Estuary Type (하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화: II. 염분구조와 하구유형)

  • Lee, Sang-Ho;Kwon, Hyo-Keun;Choi, Hyun-Yong;Yang, Jae-Sam;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.255-265
    • /
    • 1999
  • CTD castings and current observations are taken in June, July and October, 1997 and May and July, 1998 to investigate the effect of the Keum River dyke on the structure of physical properties and the type of the Keum River estuary. Tide and tidal current relation shows that the ebbing is longer than the flooding by 1.5 hours with the early current reversing before high tide. In the rainy season (May to July), frequent large fresh water discharge during the ebbing from the dyke changes vertical salinity difference and time variation of salinity greatly near the head of the estuary, where salinity becomes lower than 2‰ in summer fresh water flooding. Halocline developed by the fresh water discharge makes two-layer structure, of which strength and depth increase in the low tide. The relationship between tide phase and surface salinity variation shows the phase lag of 2.5 hours near the head of the estuary but the standing wave relation down the estuary. This phase lag implies that a low salinity water diluted by the fresh water discharge for 2-3 hours in the ebb period moves with tidal excursion. In the dry season, vertical salinity difference reduces significantly. We calculate stratification and circulation parameters using the observed salinity structure, surface current and fresh water discharge. The Keum River estuary shows a partially mixed type, changing the stratification parameter from the rainy to the dry season. Mean flows of observed tidal current at lower and upper layer are landward and seaward, which are consistent with the circulation of a partially mixed estuary. Based upon the estuary type and circulation we suggest that the suspended materials will move toward the upstream due to low-layer mean flow and then the Keum River estuary will be a deposit environment.

  • PDF

Non-astronomical Tides and Monthly Mean Sea Level Variations due to Differing Hydrographic Conditions and Atmospheric Pressure along the Korean Coast from 1999 to 2017 (한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.11-36
    • /
    • 2021
  • The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect.

Characteristics of Flow and Sedimentation around the Embankment (방조제 부근에서의 흐름과 퇴적환경의 특성)

  • Lee Moon Ock;Park Il Heum;Lee Yeon Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.37-55
    • /
    • 2000
  • Two-dimensional numerical experiments and field surveys have been conducted to clarify some environmental variations in the flow and sedimentation in the adjacent seas after the construction of a tidal embankment. Velocities of flow and water levels in the bay decreased after the construction of the barrage. When the freshwater was instantly released into the bay, the conditions of flow were unaltered, with the exception of a minor variation in velocities and tidal levels around the sluices at the ebb flow. The computational results showed that freshwater released at the low water reached the outside of the bay and then returned to the inside with the tidal currents at the high water. The front sea regions of the embankment had a variety of sedimentary phases such as a clayish silt, a silty clay and a sandy clayish silt. However, a clayish silt was prevalent in the middle of the bay. On the other hand, the skewness, which reflects the behaviour of sediments, was $\{pm}0.1$ at the front regions of the embankment while it was more than ±0.3 in the middle of the bay. Analytical results of drilling samples acquired from the front of the sluice gates showed that the lower part of the sediments consists of very fine silty or clayish grains. The upper surface layer consisted of shellfish, such as oyster or barnacle with a thickness of 40~50 cm. Therefore, it seemed that the lower part of the sediments would have been one of intertidal zones prior to the embankment construction while the upper shellfish layer would have been debris of shellfish farms formed in the adjacent seas after the construction of the embankment. This shows the difference of sedimentary phases reflected the influence of a tidal embankment construction.

  • PDF

Environmental Character and Catch Fluctuation of Set Net Ground in the Coastal Water of Hanlim in Cheju Island II. Fluctuation of Temperature, Salinity and Current (제주도 한림 연안 정치망 어장의 환경특성과 어획량 변동에 관한 연구 II. 수온 및 염분의 변동과 해수의 유동)

  • KIM Jun-Teck;JEONG Dong-Gun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.98-104
    • /
    • 1999
  • To investigate the relationships between ocean environmental characteristics, the time-series data of temperature and salinity observed at a station near at Hanlim set net in 1995 and 1996 are analyzed, and the results are as follow ; 1. In hanlim set net, the diurnal range of temperature and salinity variation in summer is very large and the amplitude of short-period fluctuation of temperature and salinity is very large. That is, not only the water of the middle and bottom layers (low temperature and high salinity) but also the coalstal water (high temperature and low salinity) appears alternatively depending on the current direction 2. from the result of mooring for 22 days in Hanlim set net, the mean speed and direction of tidal current in neap tide were 9.1 cm/sec and south westward in ebb time, and 11.6 cm/sec and north or northeastward in flood time, respectively. The highest speed of the current was 15cm/sec in ebb time, and 22.6 cm/sec in flood time. The mean speed and direction of tidal current in spring tide were 10.4 cm/sec, and southwestward in ebb time, and 12.3 cm/sec, and north or northestward in flood time, respectively. The highest speed of the current was 19.4 cm/sec in ebb time, and 20 cm/sec in flood time respectively. The mean speed of the current in flood time was larger than that in ebb time. The velocity vector along the major axis of semidiurnal tide ($M_2$) component was 1.5 times larger than that of diurnal tide ($K_1$), The major directions of two compornants were northwestward and east-southeastward and residiual current were 3.25 cm/sec and northwestward-directed. Result of TGPS Buoy tracer for 3 days between Biyang-Do and Chgui-Do showed that the mean speed was 1.6 knot in ebb time and 1.3 knot in flood time. Direction of tidal was southwestward in ebb time and northeastward in flood time respectively. The maximum current speed was 4.8 knot in ebb time and 3.7 knot in flood time respectively. The mean speed and direction of tidal in of offshore were 1.7 knot and northwestward in flood time. The residual current appeared 0.3 knot northeastward.

  • PDF

Numerical Study on Spring-Neap Variability of Net Volume Transport at Yeomha Channel in the Han River Estuary (한강하구 수로별 순 수송량과 대.소조기 변화에 따른 염하수로의 순 수송량 변동에 관한 수치해석적 연구)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.257-268
    • /
    • 2012
  • The EFDC model with find grid resolution system connecting the Gyeong-Gi bay and Han River estuary was constructed to study on spring-neap variability of net volume transport at each channel of the Han River estuary. The simulation time of numerical model is 124 days from May to August, 2009 with freshwater discharge at Han, Imjin and Yeseong River. The calibration and verification of model results was confirmed using harmonic components of water level and tidal current. The net volume transport was calculated during 30 days with normal freshwater conditions at Seokmo channel and Yeomha channel around Ganghwado. The ebbing net volume transport of 44% and 56% is drained into Gyeong-Gi bay through Yeomha and Seokmo channel, respectively. The ebbing net volume transport nearby Seodo at Yeomha channel convergence flooding net volume transport at Incheon harbor, and drain (westward direction) through channel of tidal flat between Ganghwado and Yeongjongdo to the Gyeong-Gi bay. The averaged net volume transport during 4 tidal cycles was compared to variation of spring-neap periods of the Yeomha channel. The convergence position is moved up- and down-ward according to spring-neap variability. The movement of the convergence zone is appeared because 1) increasing of discharged rate tidal flat channel between Ganghwado and Yeongjongdo at the spring period, 2) The growth of barotropic forcing with downward direction at the spring tide, and 3) The strength of the baroclinic pressure gradient is greater than spring with mixing processes.