• Title/Summary/Keyword: tidal station

Search Result 151, Processing Time 0.03 seconds

The Study of Coastal Change Detection Ortho Aerial Photo and Hydrographic Survey: Parcels Submerged (정사항공사진과 해양조사측량을 이용한 해안선변화 탐지에 관한 연구: 포락지 중심으로)

  • Choi Chul Eung;Kim Youn Soo;Suh Yong Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.61-69
    • /
    • 2005
  • The coastal erosion and the look of a heap which are mainly occurred in the district along the coast are found for various forms such as the estuary closing, the estuary sand bar the development of the coast sand bar, and the modification of coastline. Recently, due to the coastal development, these transformations have been intensified. The change of coast, which has been made slow progress is required long-term study on a searching examination of the root cause and a suggestion of a counter measure. In this research, ortho aerial photos were produced to analyze volumes of topographical alternations that have been progressed fer the long run, by 10s cycle from 1940s through 1990s, to compute accurate volumes of coastline variation, through a datum point and G.C.P (Ground Control Point). Also in this study, without respect to water level, the coastline variation was analyzed by using comparatively analyzed a Idlest land map, a cadastral map. And to analyze topographical variation volumes, the tidal station's materials was used under consideration f3r tide. Finally, topographical variation volumes are comparatively analyzed through surveying and sounding and a point of fine of aviation photographing was calculated and revised. After this research, by using ortho aerial photos, We can understand efficiency of these in computing volumes of variations of coastline by analyzing quantitatively erosion and look of a heap. Besides, in the future, these will be used for information gathering of the coastline integration control system.

Application of KOMPSAT-5 SAR Interferometry by using SNAP Software (SNAP 소프트웨어를 이용한 KOMPSAT-5 SAR 간섭기법 구현)

  • Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2017
  • SeNtinel's Application Platform (SNAP) is an open source software developed by the European Space Agency and consists of several toolboxes that process data from Sentinel satellite series, including SAR (Synthetic Aperture Radar) and optical satellites. Among them, S1TBX (Sentinel-1 ToolBoX)is mainly used to process Sentinel-1A/BSAR images and interferometric techniques. It provides flowchart processing method such as Graph Builder, and has convenient functions including automatic downloading of DEM (Digital Elevation Model) and image mosaicking. Therefore, if computer memory is sufficient, InSAR (Interferometric SAR) and DInSAR (Differential InSAR) perform smoothly and are widely used recently in the world through rapid upgrades. S1TBX also includes existing SAR data processing functions, and since version 5, the processing capability of KOMPSAT-5 has been added. This paper shows an example of processing the interference technique of KOMPSAT-5 SAR image using S1TBX of SNAP. In the open mine of Tavan Tolgoi in Mongolia, the difference between DEM obtained in KOMPSAT-5 in 2015 and SRTM 1sec DEM obtained in 2000 was analyzed. It was found that the maximum depth of 130 meters was excavated and the height of the accumulated ore is over 70 meters during 15 years. Tidal and topographic InSAR signals were observed in the glacier area near Jangbogo Antarctic Research Station, but SNAP was not able to treat it due to orbit error and DEM error. In addition, several DInSAR images were made in the Iraqi desert region, but many lines appearing in systematic errors were found on coherence images. Stacking for StaMPS application was not possible due to orbit error or program bug. It is expected that SNAP can resolve the problem owing to a surge in users and a very fast upgrade of the software.

Critical Saline Concentration of Soil and Water for Rice Cultivation on a Reclaimed Saline Soil (간척지 벼 재배시 토양 및 관개수 염의 안전 한계농도)

  • 최원영;이규성;고종철;최송열;최돈향
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.238-242
    • /
    • 2003
  • Reclaimed tidal areas for rice cultivation are irrigated with salt mixed water when there is severe drought. Therefore, we identified the critical concentration of saline water for rice growth on a reclaimed saline soil in Korea. The experiment was conducted at the Kyehwado substation of the National Honam Agricultural Experiment Station (NHAES) during 2001-2002. Two experimental fields with 0.1-0.2% for low soil salinity and 0.3-0.4% for medium soil salinity levels were used. The experiment involved four levels of salt solution mixed with sea water (at 0.1, 0.3, 0.5, 0.7%) compared with a control using tap water in a split-plot design with three replicates. Saline solution was applied only two times at seedling stage (10 DAT and 25 DAT) for 5 days. Gyehwabyeo and dongjinbyeo, japonica rice varieties, were used in this experiment. Plant height and number of tillers sharply decreased in the 0.5% saline water in low soil salinity level and 0.1% in medium soil salinity level. For yield components, panicle number per unit area and percentage of ripened grain dramatically decreased in the 0.5% saline water in low soil salinity and 0.1% in medium soil salinity level. But 1,000-grain weight of brown rice decreased sharply in the 0.5% saline water in low soil salinity and 0.3% in medium soil salinity, indicating that this component was not much affected unlike other yield components. Milled rice yield decreased significantly with saline water level in both low and medium soil salinity. In the 0.7% low saline soil, the yield index was only 36% compared with the control. In medium soil salinity, even the control plot showed only 62% yield index compared with the control in the low soil salinity treatment. Results indicated that the critical concentration of saline water for rice growth in terms of economical income of rice production was 0.5% in low soil salinity and tap water in medium soil salinity.

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

Impact of Pollution Sources on the Bacteriological Water Quality in the Yongnam-Gwangdo Shellfish Growing Area of Western Jinhae Bay, Korea (진해만 서부 용남·광도해역의 세균학적 수질에 미치는 육상 오염원의 영향)

  • Shim, Kil Bo;Ha, Kwang Soo;Yoo, Hyun Duk;Lee, Tae Seek;Kim, Ji Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.561-569
    • /
    • 2012
  • To evaluate the bacteriological water quality in Yongnam-Gwangdo, located in western Jinhae Bay, seawater samples were analyzed using sanitary indicator bacteria at 57 sampling stations. According to survey results from January 2007 to December 2009, the range of the geometric mean and the estimated 90th percentile for coliforms and fecal coliforms in the samples were <1.8-16.5 and 1.8-246.8 MPN/100 mL and <1.8-7.1 and 1.8-74.8 MPN/100 mL, respectively. The samples, including those taken from stations located in Wonmunman, Gwangdo, and Dangdong, showed high levels of microbial contamination caused by the climate and weather patterns in the marine environment. The bacteriological water quality in the area met Korean criteria for a designated shellfish growing area for export and National Shellfish Sanitation Program criteria for an approved shellfish growing area, except at station #49. A total of 24 direct pollution sources were discharged into the shellfish growing area. The radius of impact was calculated for each pollution source to assess the effect on the shellfish growing area. The calculated radius of impact for most of the pollution sources was below 300 m. However, the radius of impact for the combined pollution sources in Kyeonnaeryang was 93-1973 m. There were significant differences between the calculated closed sea area and actual monitoring results. The closed sea area values calculated from the fecal coliform load in drainage water tended to be higher than the actual monitoring results. Tidal currents and environmental factors such as salinity, water temperature, sunlight, and microbiological factors affect the survival of fecal indicator bacteria in seawater.

Preliminary Study for Tidal Flat Detection in Yeongjong-do according to Tide Level using Landsat Images (Landsat 위성을 이용한 조위에 따른 영종도 갯벌의 면적 탐지에 관한 선행 연구)

  • Lee, Seulki;Kim, Gyuyeon;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.639-645
    • /
    • 2016
  • Yeongjong-do is seventh largest island in the west coast of Korea which is 4.8 km away in the direction of south-west from Incheon. The mudflat area around the Yeongjong-do has variable dimension according to tide level. In addition, Yeongjong-do is important area with high environmental value as wintering sites for migratory birds. The mudflat of Yeongjong-do is also meaningful region because it is used as place of education and tourist attraction. But, there are increasing concerns about preservation of mudflat area caused by artificial development such as land reclamation project and Incheon airport construction. In this paper, mudflat area was detected using Landsat 7 ETM+ images that United States Geological Survey (USGS) is providing the data in 16 days period. The false color composite was made from band 7, 5, and 3 that could dividing boundary between water and land for the purpose of appearance of boundary line in mudflat region. This area was calculated using results of classification based on false color composite images and was digitized through repetitive algorithm during research of period. Therefore, the change of northeastern area in Yeongjong-do was detected according to tide level during 16 years from 2000 to 2015 on the basis of providing period at tide station. This paper will expect as indicator for range of area in same tide level prior to the start of the research for preservation of mudflat. It will be also scientific grounds about change of mudflat area caused by artificial development.

Growth and Production of Macrobenthic Fauna on a Macrotidal Flat, Inchon, Korea -II. Production of the Razor Clam, Solen (Solen) strictus (Bivalvia, Solenidae) from Chokchon Tidal Flat- (인천연안 간석지산 주요 저서생물의 성장과 생물생산 -II. 척전지역 간석지에 서식하는 맛조개, Solen (Solen) strictus의 생물생산-)

  • HONG Jae-Sang;PARK Heung-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.560-571
    • /
    • 1994
  • A single station representative of the razor clam, Solen (Solen) strictus, on a macrotidal flat, Inchon, Korea was sampled at bimonthly intervals between May 1989 and July 1990 by using a can corer. Estimates of growth rate and annual production of this razor clam have been made using the techniques of cohort growth analysis. Growth rate and production were highest during the first year after spawning and recruitment. The annual production was $2.83g\;DWt/m^2/yr$, mean annual biomass $256.3\;g/w^20$, and a turnover time of 5.00 yea, giving an annual turnover rate (P/B) of $0.20\;yr^{-1}$. The total annual production in wet weight ($33.22g\;WWt/m^2/yr$) appeared to consist of water in live flesh($72.6\%$) and shell($18.9\%$), whereas the dry weight of the soft parts was $8.52\%$, the ash-free dry weight $5.4\%$, and the ash content $3.1\%$ of the total wet weight.

  • PDF

Flow rate prediction at Paldang Bridge using deep learning models (딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측)

  • Seong, Yeongjeong;Park, Kidoo;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.565-575
    • /
    • 2022
  • Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.

Assessment of Phytoplankton Viability Along the Salinity Gradient in Seomjin River Estuary, Korea (섬진강 하구역에서 염분구배에 따른 식물플랑크톤 활성도 평가)

  • Lim, Youngkyun;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.513-523
    • /
    • 2017
  • We evaluated the viability of phytoplankton along the salinity gradient in the flood and ebb tides of spring tide of February and the ebb tide of neap tide of March 2017 in the Seomjin River Estuary. Additional laboratory experiments were also conducted to determine the reason of the pH changes along the salinity gradient using the field natural sample in February. In field, saltwater was well mixed at downstream vertically and the salinity gradient was horizontally appeared toward upstream of freshwater zone. There were strong negative correlations between salinity and nutrient (nitrate + nitrite R=0.99, p<0.001, and silicate R=0.98, p<0.001), implying that those two nutrients of freshwater origin were gradually diluted with mixing the saltwater. On the other hands, relatively high phosphate concentration was kept in the stations of saltwater over 15 psu, indicating that it was caused by resuspended sediments of Gwangyang Bay and downstream by tidal water mixing.Among phytoplankton community structure in winter, Eucampia zodiacus have occupied to be c.a. 70 % in the most stations. Based on the field survey results for survivability of phytoplankton by phytoPAM instrument, there was positive correlations between salinity and chlorophyll a (R=0.82, p<0.001) and, salinity and active chlorophyll a (R=0.80, p<0.001), implying that the dominant marine diatom species may have significantly damaged in low salinity conditions of upstream. Also, maximum mortality rate of phytoplankton caused by low salinity shock was appered to be 75% in the upstream station. In particular, the pH in spring tides of February had tended to increase with high phytoplankton accmulated stations, suggesting that it was related with absorption of $CO_2$ by the photosynthesis of dominant diatom. In laboratory experiments, phytoplankton mass-mortality caused by low salinity shock was also occurred, which is confirmed with reducing the photosynthetic electron transport activity. Following the phytoplankton mass-mortality, bacteria abundance was significantly increased in 24 hours. As a result, the mass-proliferating bacteria can produce the $CO_2$ in the process of biodegradation of diatoms, which can lead to pH decrease. Therefore, marine phytoplankton species was greatly damaged in freshwater mixing area, depending on along the salinity gradient that was considered to be an important role in elevating and reducing of pH in Seomjin River Estuary.

Accuracy Assessment of Tide Models in Terra Nova Bay, East Antarctica, for Glaciological Studies of DDInSAR Technique (DDInSAR 기반의 빙하연구를 위한 동남극 테라노바 만의 조위모델 정밀도 평가)

  • Han, Hyangsun;Lee, Joohan;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Accuracy assessment of tide models in polar ocean has to be performed to accurately analyze tidal response of glaciers by using Double-Differential Interferometric SAR (DDInSAR) technique. In this study, we used 120 DDInSAR images generated from 16 one-day tandem COSMO-SkyMed DInSAR pairs obtained for 2 years and in situ tide height for 11 days measured by a pressure type wave recorder to assess the accuracy of tide models such as TPXO7.1, FES2004, CATS2008a and Ross_Inv in Terra Nova Bay, East Antarctica. Firstly, we compared the double-differential tide height (${\Delta}\dot{T}$) for Campbell Glacier Tongue extracted from the DDInSAR images with that predicted by the tide models. Tide height (T) from in situ measurement was compared to that of the tide models. We also compared 24-hours difference of tide height ($\dot{T}$) from in situ tide height with that from the tide models. The root mean square error (RMSE) of ${\Delta}\dot{T}$, T and $\dot{T}$ decreased after the inverse barometer effect (IBE)-correction of the tide models, from which we confirmed that the IBE of tide models should be corrected requisitely. The RMSE of $\dot{T}$ and ${\Delta}\dot{T}$ were smaller than that of T. This was because $\dot{T}$ is the difference of tide height during temporal baseline of the DInSAR pairs (24 hours), in which the errors from mean sea level of the tide models and in situ tide, and the tide constituents of $S_2$, $K_2$, $K_1$ and $P_1$ used in the tide models were canceled. This confirmed that $\dot{T}$ and ${\Delta}\dot{T}$ predicted by the IBE-corrected tide models can be used in DDInSAR technique. It was difficult to select an optimum tide model for DDInSAR in Terra Nova Bay by using in situ tide height measured in a short period. However, we could confirm that Ross_Inv is the optimum tide model as it showed the smallest RMSE of 4.1 cm by accuracy assessment using the DDInSAR images.