DOI QR코드

DOI QR Code

Accuracy Assessment of Tide Models in Terra Nova Bay, East Antarctica, for Glaciological Studies of DDInSAR Technique

DDInSAR 기반의 빙하연구를 위한 동남극 테라노바 만의 조위모델 정밀도 평가

  • Han, Hyangsun (Department of Geophysics, Kangwon National University) ;
  • Lee, Joohan (Unit of New Antarctic Station, Korea Polar Research Institute) ;
  • Lee, Hoonyol (Department of Geophysics, Kangwon National University)
  • Received : 2013.07.01
  • Accepted : 2013.08.05
  • Published : 2013.08.30

Abstract

Accuracy assessment of tide models in polar ocean has to be performed to accurately analyze tidal response of glaciers by using Double-Differential Interferometric SAR (DDInSAR) technique. In this study, we used 120 DDInSAR images generated from 16 one-day tandem COSMO-SkyMed DInSAR pairs obtained for 2 years and in situ tide height for 11 days measured by a pressure type wave recorder to assess the accuracy of tide models such as TPXO7.1, FES2004, CATS2008a and Ross_Inv in Terra Nova Bay, East Antarctica. Firstly, we compared the double-differential tide height (${\Delta}\dot{T}$) for Campbell Glacier Tongue extracted from the DDInSAR images with that predicted by the tide models. Tide height (T) from in situ measurement was compared to that of the tide models. We also compared 24-hours difference of tide height ($\dot{T}$) from in situ tide height with that from the tide models. The root mean square error (RMSE) of ${\Delta}\dot{T}$, T and $\dot{T}$ decreased after the inverse barometer effect (IBE)-correction of the tide models, from which we confirmed that the IBE of tide models should be corrected requisitely. The RMSE of $\dot{T}$ and ${\Delta}\dot{T}$ were smaller than that of T. This was because $\dot{T}$ is the difference of tide height during temporal baseline of the DInSAR pairs (24 hours), in which the errors from mean sea level of the tide models and in situ tide, and the tide constituents of $S_2$, $K_2$, $K_1$ and $P_1$ used in the tide models were canceled. This confirmed that $\dot{T}$ and ${\Delta}\dot{T}$ predicted by the IBE-corrected tide models can be used in DDInSAR technique. It was difficult to select an optimum tide model for DDInSAR in Terra Nova Bay by using in situ tide height measured in a short period. However, we could confirm that Ross_Inv is the optimum tide model as it showed the smallest RMSE of 4.1 cm by accuracy assessment using the DDInSAR images.

이중차분간섭기법(Double-Differential Interferometric SAR; DDInSAR)을 이용하여 빙하의 조위반응을 정확히 해석하기 위해서는 극지 해양에 대한 조위모델의 정밀도 평가가 수행되어야 한다. 이 연구에서는 동남극 테라노바 만에서 TPXO7.1, FES2004, CATS2008a, Ross_Inv 조위모델의 정밀도를 평가하기 위해 2년 동안 획득된 16쌍의 one-day tandem COSMO-SkyMed SAR 간섭영상으로부터 생성한 120개의 DDInSAR 영상과 수압식 파고계로 11일 동안 실측한 조위를 이용하였다. 먼저, DDInSAR 영상과 조위모델로 추출된 조위의 이중차분값(${\Delta}\dot{T}$)을 비교하였으며, 실측조위와 조위모델의 조위(T), 그리고 실측조위와 조위모델 조위의 24시간 차분값($\dot{T}$)을 비교하였다. ${\Delta}\dot{T}$와 T, $\dot{T}$의 평균제곱근오차(root mean square error; RMSE)는 조위모델의 역기압 효과(inverse barometer effect; IBE) 보정 후에 감소하였고, 이로부터 조위모델의 IBE는 필수적으로 보정되어야 함이 확인되었다. $\dot{T}$${\Delta}\dot{T}$는 T보다 작은 RMSE를 보였다. 이는 SAR 간섭쌍의 시간차(24시간) 동안의 차분값인 에 조위모델과 실측조위의 평균해수면 오차와 조위모델이 사용하는 조화상수 중 $S_2$, $K_2$, $K_1$, $P_1$의 오차가 상쇄되기 때문이다. 따라서 IBE가 보정된 조위모델의 $\dot{T}$${\Delta}\dot{T}$가 DDInSAR 기법에 사용될 수 있음을 확인하였다. 단기간 실측된 조위로는 최적의 조위모델 선정에 어려움이 있었으나, DDInSAR를 이용한 정밀도 평가에 의하면 Ross_Inv가 4.1 cm의 RMSE를 보여 테라노바 만의 DDInSAR에 가장 적합한 조위모델로 확인되었다.

Keywords

References

  1. Andersen, O.B., P.L. Woodworth, and R.A. Flather, 1995. Intercomparison of recent ocean tide models, Journal of Geophysical Research, 100(C12): 25,261-25,282. https://doi.org/10.1029/95JC02642
  2. Bromirski, P.D. and R.A. Stephen, 2012. Response of the Ross Ice Shelf, Antarctica, to ocean gravitywave forcing, Annals of Glaciology, 53(60): 163-172. https://doi.org/10.3189/2012AoG60A058
  3. Brunt, K.M., M.A. King, H.A. Fricker, and D.R. MacAyeal, 2010. Flow of the Ross Ice Shelf, Antarctica, is modulated by the ocean tide, Journal of Glaciology, 56(195): 157-161. https://doi.org/10.3189/002214310791190875
  4. Egbert, G.D. and S.Y. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides, Journal of Atmospheric and Oceanic Technology, 19(2): 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  5. Fricker, H.A. and L. Padman, 2002. Tides on Filchner-Ronne Ice Shelf from ERS radar altimetry, Geophysical Research Letters, 29(12), 50. https://doi.org/10.1029/2001GL014175
  6. Goldstein, R.M., H.A. Zebker, and C.L. Werner, 1988. Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Science, 23(4): 713-720. https://doi.org/10.1029/RS023i004p00713
  7. Griggs, J.A. and J.L. Bamber, 2011. Antarctic ice-shelf thickness from satellite radar altimetry, Journal of Glaciology, 57(203): 485-498. https://doi.org/10.3189/002214311796905659
  8. Han, H. and H. Lee, 2013. Tidal deflection of Campbell Glacier Tongue analyzed by COSMOSkyMed double-differential interferometric SAR images, Proc. of 2013 International Symposium on Remote Sensing, Chiba, Japan, Apr. 15-17.
  9. Han, H., Y. Ji, and H. Lee, 2013. Estimation of annual variation of ice extent and flow velocity of Campbell Glacier in East Antarctica using COSMO-SkyMed SAR images, Korean Journal of Remote Sensing, 29(1): 45-55. https://doi.org/10.7780/kjrs.2013.29.1.5
  10. King, M. and L. Padman, 2005. Accuracy assessment of ocean tide models around Antarctica, Geophysical Research Letters, 32, L23608. https://doi.org/10.1029/2005GL023901
  11. King, M., N.T. Penna, P.J. Clarke, and E.C. King, 2005. Validation of ocean tide models around Antarctica using onshore GPS and gravity data, Journal of Geophysical Research, 110, B08401.
  12. Le Provest, C., F. Kyard, J.M. Molines, M.L. Genco, and F. Rabilloud, 1998. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set, Journal of Geophysical Research, 103(C3): 5513-5529. https://doi.org/10.1029/97JC01733
  13. Legrésy, B., A. Wendt, I. Tabacco, F. Remy, and R. Dietrich, 2004. Influence of tides and tidal current on Mertz Glacier, Antarctica, Journal of Glaciology, 50(170): 427-435. https://doi.org/10.3189/172756504781829828
  14. Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006. Modelling the global ocean tides: modern insights from FES2004, Ocean Dynamics, 56(5-6): 394-415. https://doi.org/10.1007/s10236-006-0086-x
  15. McMillan, M., A. Shepherd, P. Nienow, and A. Leeson, 2011. Tide model accuracy in the Amundsen Sea, Antarctica, from radar interferometry observations of ice shelf motion, Journal of Geophysical Research, 116, C11008. https://doi.org/10.1029/2011JC007294
  16. Mitrovica, J.X., M.E. Tamisiea, J.L. Davis, and G.A. Milne, 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change, Nature, 409(6823): 1026-1029. https://doi.org/10.1038/35059054
  17. Moore, P. and M.A. King, 2008. Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects, Journal of Geophysical Research, 113, F02005.
  18. Padman, L. and H.A. Fricker, 2005. Tides on the Ross Ice Shelf observed with ICESat, Geophysical Research Letters, 32, L14503.
  19. Padman, L., H.A. Fricker, R. Coleman, S. Howard, and L. Erofeeva, 2002. A new tide model for the Antarctic ice shelves and seas, Annals of Glaciology, 34(1): 247-254. https://doi.org/10.3189/172756402781817752
  20. Padman, L., M. King, D. Goring, H. Corr, and R. Coleman, 2003a. Ice shelf elevation changes due to atmospheric pressure variations, Journal of Glaciology, 49(167): 521-526. https://doi.org/10.3189/172756503781830386
  21. Padman, L., S. Erofeeva, and I. Joughin, 2003b. Tides of the Ross Sea and Ross Ice Shelf cavity, Antarctic Science, 15: 31-40. https://doi.org/10.1017/S0954102003001032
  22. Rignot, E., 1996. Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry, Journal of Glaciology, 42(142): 476-485. https://doi.org/10.1017/S0022143000003464
  23. Rignot, E., 1998. Radar interferometry detection of hinge-line migration on Rutford Ice Stream and Carlson Inlet, Antarctica, Annals of Glaciology, 27: 25-32. https://doi.org/10.3189/1998AoG27-1-25-32
  24. Rignot, E., J. Mouginot, and B. Scheuchl, 2011. Antarctic grounding line mapping from differential satellite radar interferometry, Geophysical Research Letters, 38, L10504.
  25. Shum, C.K., P.L. Woodworth, O.B. Andersen, G.D. Egbert, O. Francis, C. King, S.M. Klosko, C. Le Provost, X. Li, J-M. Molines, M.E. Parke, R.D. Ray, M.G. Schlax, D. Stammer, C.C. Tiemey, P. Vincent, and C.I. Wunsch, 1997. Accuracy assessment of recent ocean tide models, Journal of Geophysical Research, 102(C11): 25,173-25,194. https://doi.org/10.1029/97JC00445
  26. von der Osten-Woldenburg, H., 1990. Icequakes on Ekstrom Ice Shelf near Atka Bay, Antarctica, Journal of Glaciology, 36(122): 31-36. https://doi.org/10.1017/S0022143000005517
  27. Watson, C., R. Coleman, and R. Handsworth, 2008. Coastal tide gauge calibration: a case study at Macquarie Island using GPS buoy techniques, Journal of Coastal Research, 24(4): 1071-1079. https://doi.org/10.2112/07-0844.1

Cited by

  1. 한국의 극지 원격탐사 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.1
  2. Differential interferometric synthetic aperture radar for tide modelling in Antarctic ice-shelf grounding zones vol.13, pp.12, 2013, https://doi.org/10.5194/tc-13-3171-2019
  3. Predicting tidal heights for extreme environments: from 25 h observations to accurate predictions at Jang Bogo Antarctic Research Station, Ross Sea, Antarctica vol.16, pp.5, 2013, https://doi.org/10.5194/os-16-1111-2020
  4. Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method vol.37, pp.1, 2013, https://doi.org/10.7780/kjrs.2021.37.1.1