• Title/Summary/Keyword: thrust

Search Result 2,661, Processing Time 0.027 seconds

Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing (표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

A Study of Thrust Maximization Using Analytical Method Considering Slot Effect in Pemanent Magnet Linear Synchronous Motor (슬롯효과를 고려한 해석적인 방법에 의한 PMLSM의 출력 최대화에 관한 연구)

  • Lee Dong-Yeup;Kim Duk-Hyun;Kim Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.323-328
    • /
    • 2005
  • This paper is proposed maximum thrust design of slotted permanent magnet linear synchronous motor(PMLSM) using surface harmonic method(SHM) considering slot effect. The genetic a1gorithm is used for optimization. The functional are selected the maximum thrust and the minimum detent force. This time. design parameters are set as permanent magnet(PM) width. PM height and slot width. Thrust is increased from 272[N] to 295[N] and detent force is decreased from 5[N] to 2.43[N] greatly in optimum design. Therefore, thrust ripple isn't generating almost. Also, the results of 2D EMC considering slot-effect are compared with ones of experimental and finite element analysis..

A study of rippleless thrust force control for LPM (LPM의 추력리플 저감 기법 개발)

  • Kim, Moon-Hwan;Kim, Kook-Hun;Ha, In-Joong;Ko, Yo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.358-360
    • /
    • 1996
  • LPM(Linear pulse motor) has made linear motions by itself. And the LPM has higher thrust force ratio to mass and more wide driving speed lunges comparing with the conventional rotating type motors. However, there are the thrust force ripples in the LPM, which are produced by the mechanical structures and nonlinear back emf. It makes to hesitate the practical applications of LPM. Especially, it becomes needed to reduce the thrust force ripples for practical, which needs relative low driving speeds. For reducing the thrust force ripples, in the first place, it was built a new nonlinear linkage flux equations of the LPM. In these equations, the influence of permanent magnetic and variable reluctance thrust force components were considered. In this paper, some experimental results in the modeling of LPM are shown and detent lone and holding force characteristics of LPM are measured.

  • PDF

Permanent Magnet Combined Thrust Magnetic Bearing Simulation and Experiment (영구자석조합형 축방향 자기베어링 시뮬레이션 및 실험)

  • Park, Byeong-Cheol;Jung, Se-Yong;Han, Sang-Chul;Lee, Jeong-Phil;Han, Young-Hee;Park, Byung-Jun
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.167-173
    • /
    • 2011
  • In this paper, an actuator model of the thrust magnetic bearing for the flywheel energy storage is derived using magnetic circuit theory. And we compared this result with finite element magnetic field analysis result. Based on the actuator model, we made a simulation model of the thrust magnetic bearing system. We showed the closed loop transfer function and sensitivity function of the thrust magnetic bearing system using both the simulation model and the experiment. The experimental result at rotation velocity 18,000rpm of thrust magnetic bearing system is included.

A Elicitation of Polynomial Equation of Thrust Coefficient for Linear Synchronous Motor by Experimental Design Method (영구자석의 overhang 길이 및 skew 효과를 고려한 LSM 추력함수 도출)

  • Jang, Ki-Bong;Pyo, Se-Ho;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1105-1109
    • /
    • 2009
  • This paper deals with a polynomial thrust equation of a permanent magnet linear synchronous motor that is considered by a skew and overhang effects of permanent magnet. The skew length, the overhang length, the width and height of permanent magnet, the teeth length and air-gap length which effect to the flux density of air-gap are selected as variables of the polynomial thrust equation. Polynomial thrust equation is elicited by the 6 parameters. The results are satisfied that the values by polynomial thrust equation are compared ones by using 3-dimensional finite element analysis and experiment.

Development of Remote Diagnostic Monitoring System for Motor-Operated Valves (모터구동밸브의 원격 진단 시스템 개발에 대한 연구)

  • Lim, Chan-Woo;Chai, Jang-Bom;Kang, Seong-Ki;Park, Sung-Keun;Kang, Shin-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.434-439
    • /
    • 2002
  • A diagnostic methodology, which utilizes only the remotely-measurable signals, has been requested to be developed in order to evaluate and monitor conditions of MOVs. It is proven that the stem thrust are the most important variables which provide the operability of MOVs. Therefore the stem thrust estimator was developed and validated, which estimates stem thrust by use of the motor torque. The motor torque is calculated using electrical signals which can be measured in Motor Control Center(MCC). The procedures to evaluate the accuracy of the diagnostic variables were set up and the accuracy of each variable was obtained through the experiments under various conditions. In addition, the applicability of the stem thrust estimator was tested in the plants.

  • PDF

Investigation of the 2D Convergent-Divergent Thrust Vectoring Nozzle (2D 추력편향 노즐 성능 및 유동 해석)

  • Kim, Yoon-Hee;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.483-486
    • /
    • 2009
  • An investigation of the thrust vectoring nozzle which can be applied to the supersonic variable exhaust system was performed. The maximum mach number of the model aircraft is 1.8 and mission radius is about 400Nm. The cycle analysis are performed at each operating regime of the aircraft and the specifications of the thrust vectoring nozzle were developed. Based upon the requirement of the thrust vectoring nozzle, two dimensional thrust vectoring nozzle were designed and flow analysis was conducted by deflection of the pitch and yaw angle.

  • PDF

Thrust Enhancement through a Tandem Mode of Flapping Wing in Micro Flow (마이크로 유동에서 플래핑 날개의 Tandem 모드를 이용한 추력향상에 대한 연구)

  • Jang, Sung-Min;Maeng, Joo-Sung;An, Sang-Joon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.605-611
    • /
    • 2011
  • In this study, based on previous studies, the thrust generated by using flapping tandem wings is examined. We studied on the relationship between the parameters for characterizing oscillatory tandem wings (namely, the Strouhal number and Reynolds number) for thrust generation in micro flow regime. At each Reynolds number, Strouhal number, heaving amplitude, distance between tandem wings, and phase difference are varied and the flapping motions of tandem mode are calculated to find the optimum conditions for generating thrust. As a result, comparing with a single flapping mode, we found that the minimum Strouhal number for generating thrust is shifted down up to approximately 25% when the tandem flapping mode is applied.

Analysis of Primary and Secondary Thrust of a Metal Belt CVT Part I : New Formula for Speed Rtio-Torque-Thrust Relationship Considering Band Tension and Block Compression (금속벨트 CVT 의 구동 및 종동 드러스트 해석 Part I : 밴드 장력과 블록 압축력을 고려한 새로운 변속비-토크-트러스트 관계식)

  • 이희라;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.132-142
    • /
    • 1999
  • In this paper, a new formula for primary and secondary thrust of metal belt CVT is proposed considering variation of band tension, block compression and active arc for each of the primary and secondary pulleys. For the secondary thrust, effective friction coefficient is introduced considering the effect of flange deflection. Nondimensional primary and secondary thrust of the metal belt CVT by the new formula agree well with the experimental results except for low torque range, $0\;<\;{\lambda}\;<\;0.2$ at speed ration i = 1.0. The new formula can be used in design of the primary and secondary thrusts control system for the metal belt CVT.

  • PDF

Shape Design of Slotless Type PMLSM for Improving Thrust Density (Slotless 영구자석형 선형 동기전동기의 고추력화를 위한 형상 설계)

  • 김용철;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.320-326
    • /
    • 2003
  • Slotless Permanent Magnet Linear Synchronous Motor (PMLSM) has good control ability but thrust density is low. So, this paper proposes inserted core type of slotless PMLSM to improve its thrust density. Inserting the core between windings of each phase, detent force is generated by the difference of magnetic resistance in an air gap. To minimize detent force, this paper applies the neural network to inserted core type of slotless PMLSM. The, Magnetic pole ratio, the width of the inserted core and the width of the coil are selected as a design parameter to minimize detent force. In comparison with inserted core type one, thrust ripple greatly decreases by minimizing detent force and also thrust increases in this optimal model.