• Title/Summary/Keyword: threshold voltage roll-off

Search Result 43, Processing Time 0.025 seconds

Modeling of Nano-scale FET(Field Effect Transistor : FinFET) (나노-스케일 전계 효과 트랜지스터 모델링 연구 : FinFET)

  • Kim, Ki-Dong;Kwon, Oh-Seob;Seo, Ji-Hyun;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.1-7
    • /
    • 2004
  • We performed two-dimensional (20) computer-based modeling and simulation of FinFET by solving the coupled Poisson-Schrodinger equations quantum-mechanically in a self-consistent manner. The simulation results are carefully investigated for FinFET with gate length(Lg) varying from 10 to 80nm and with a Si-fin thickness($T_{fin}$) varying from 10 to 40nm. Current-voltage (I-V) characteristics are compared with the experimental data. Device optimization has been performed in order to suppress the short-channel effects (SCEs) including the sub-threshold swing, threshold voltage roll-off, drain induced barrier lowering (DIBL). The quantum-mechanical simulation is compared with the classical appmach in order to understand the influence of the electron confinement effect. Simulation results indicated that the FinFET is a promising structure to suppress the SCEs and the quantum-mechanical simulation is essential for applying nano-scale device structure.

Analysis of Subthreshold Characteristics for Double Gate MOSFET using Impact Factor based on Scaling Theory (스켈링이론에 가중치를 적용한 DGMOSFET의 문턱전압이하 특성 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2015-2020
    • /
    • 2012
  • The subthreshold characteristics has been analyzed to investigate the effect of two gate in Double Gate MOSFET using impact factor based on scaling theory. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. The potential distribution was used to investigate the short channel effects such as threshold voltage roll-off, subthreshold swings and drain induced barrier lowering by varying impact factor for scaling factor. The impact factor of 0.1~1.0 for channel length and 1.0~2.0 for channel thickness are used to fit structural feature of DGMOSFET. The simulation result showed that the subthreshold swings are mostly effected by impact factor but are nearly constant for scaling factors. And threshold voltage roll-off and drain induced barrier lowering are also effected by both impact factor and scaling factor.

Reduction of short channel Effects in Ground Plane SOI MOSFET′s (Growld Plane SOI MOSFET의 단채널 현상 개선)

  • ;;;;Jean-Pierre Colinge
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.9-14
    • /
    • 2004
  • This paper reports the measurement and analysis of the short channel effects and the punchthrough voltage of SOI-MOSFET with a self-aligned ground plane electrode in the silicon mechanical substrate underneath the buried oxide. When the channel length is reduced below 0.2${\mu}{\textrm}{m}$ it is observed that the threshold voltage roll-off and the subthreshold swing with channel length are reduced and DIBL is improved more significantly in GP-SOI devices than FD-SOI devices. It is also observed from the dependence of threshold voltage with substrate biases that the body factor is a higher in GP-SOI devices than FD-SOI devices. From the measurement results of punchthrough voltage, GP-SOI devices show the higher punchthrough voltages than FD-SOI devices

Analysis of Transport Characteristics for DGMOSFET according to Channel Dopiong Concentration Using Series (급수를 이용한 DGMOSFET의 채널도핑농도에 대한 전송 특성 분석)

  • Han, Jihyung;Jung, Hakkee;Jeong, Dongsoo;Lee, Jongin;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.845-847
    • /
    • 2012
  • In this paper, the transport characteristics for doping concentration in the channel has been analyzed for DGMOSFET. The Possion equation is used to analytical. The DGMOSFET is extensively been studying because of advantages to be able to reduce the short channel effects(SCEs) to occur in conventional MOSFET. Since SCEs have been occurred in subthreshold region including threshold region, the analysis of transport characteristics in subthreshold region is very important. The threshold voltage roll-off and DIBL have been with various of doping concentration for DGMOSFET in this study.

  • PDF

The Analysis of Breakdown Voltage for the Double-gate MOSFET Using the Gaussian Doping Distribution

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.200-204
    • /
    • 2012
  • This study has presented the analysis of breakdown voltage for a double-gate metal-oxide semiconductor field-effect transistor (MOSFET) based on the doping distribution of the Gaussian function. The double-gate MOSFET is a next generation transistor that shrinks the short channel effects of the nano-scaled CMOSFET. The degradation of breakdown voltage is a highly important short channel effect with threshold voltage roll-off and an increase in subthreshold swings. The analytical potential distribution derived from Poisson's equation and the Fulop's avalanche breakdown condition have been used to calculate the breakdown voltage of a double-gate MOSFET for the shape of the Gaussian doping distribution. This analytical potential model is in good agreement with the numerical model. Using this model, the breakdown voltage has been analyzed for channel length and doping concentration with parameters such as projected range and standard projected deviation of Gaussian function. As a result, since the breakdown voltage is greatly changed for the shape of the Gaussian function, the channel doping distribution of a double-gate MOSFET has to be carefully designed.

Influence on Short Channel Effects by Tunneling for Nano structure Double Gate MOSFET (나노구조 이중게이트 MOSFET에서 터널링이 단채널효과에 미치는 영향)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.479-485
    • /
    • 2006
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin undoped Si channel for SCEs control, ale being validated for sub-20nm scaling. A novel analytical transport model for the subthreshold mode of DGMOSFETs is proposed in this paper. The model enables analysis of short channel effect such as the subthreshold swing(SS), the threshold voltage roil-off$({\Delta}V_{th})$ and the drain induced barrier lowering(DIBL). The proposed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. An approximative solution of the 2D Poisson equation is used for the distribution of electric potential, and Wentzel-Kramers-Brillouin approximation is used for the tunneling probability. The new model is used to investigate the subthreshold characteristics of a double gate MOSFET having the gate length in the nanometer range $(5-20{\sim}nm)$ with ultra thin gate oxide and channel thickness. The model is verified by comparing the subthreshold swing and the threshold voltage roll-off with 2D numerical simulations. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.

An Analytical Model for the I-V Characteristics of a Short Channel AlGaN/GaN HEMT with Piezoelectric and Spontaneous Polarizations (압전 및 자발 분극을 고려한 단채널 AlGaN/GaN HEMT의 전류-전압 특성에 관한 해석적 모델)

  • Oh Young-Hae;Ji Soon-Koo;Suh Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.103-112
    • /
    • 2005
  • In this paper, in order to derive the current-voltage characteristics of n-AlGaN/GaN HEMTs with the piezoelectric and spontaneous polarizations, we suggested analytical solutions for the two-dimensional Poisson equation in the AlGaN and GaN regions by taking into account the longitudinal field variation, field-dependent mobility, and the continuity condition of the channel current flowing in the quantum well. Obtained expressions for long and short channel devices would be applicable to the entire operating regions in a unified manner. Simulation results show that the drain saturation current increases and the cutoff voltage decreases as drain voltage increases. Compared with the conventional models, the present model seems to provide more reasonable explanation for the drain-induced threshold voltage roll-off and the channel length modulation effect.

초고집적 회로를 위한 SIMOX SOI 기술

  • Jo, Nam-In
    • Electronics and Telecommunications Trends
    • /
    • v.5 no.1
    • /
    • pp.55-70
    • /
    • 1990
  • SIMOX SOI is known to be one of the most useful technologies for fabrications of new generation ULSI devices. This paper describes the current status of SIMOX SOI technology for ULSI applications. The SIMOX wafer is vertically composed of buried oxide layer and silicon epitaxial layer on top of the silicon substrate. The buried oxide layer is used for the vertical isolation of devices The oxide layer is formed by high energy ion implantation of high dose oxygen into the silicon wafer, followed by high temperature annealing. SIMOX-based CMOS fabrication is transparent to the conventional IC processing steps without well formation. Furthermore, thin film CMOX/SIMOX can overcome the technological limitations which encountered in submicron bulk-based CMOS devices, i.e., soft-error rate, subthreshold slope, threshold voltage roll-off, and hot electron degradation can be improved. SIMOX-based bipolar devices are expected to have high density which comparable to the CMOX circuits. Radiation hardness properties of SIMOX SOI extend its application fields to space and military devices, since military ICs should be operational in radiation-hardened and harsh environments. The cost of SIMOX wafer preparation is high at present, but it is expected to reduce as volume increases. Recent studies about SIMOX SOI technology have demonstrated that the performance of the SIMOX-based submicron devices is superior to the circuits using the bulk silicon.

An Analytical Model for the Derivation of the Ⅰ-Ⅴ Characteristics of a Short Channel InAlAs/InGaAs HEMT by Solving Two-Dimensional Poisson's Equation (2차원 Poisson방정식 풀이에 의한 단 채널 InAlAs/InGaAs HEMT의 전류-전압 특성 도출에 관한 해석적 모델)

  • Oh, Young-Hae;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.21-28
    • /
    • 2007
  • In this paper, in order to derive the two-dimensional field effect of n-InAlAs/InGaAs HEMTs, we suggested analytical model by solving the two-dimensional Poisson's equation in both InAlAs and InGaAs regions by taking into account the longitudinal field variation, field-dependent mobility, and the continuity condition of the channel current flowing within the quantum well shaped channel. Derived expressions for long and short channel devices would be applicable to the entire operating regions in a unified manner. Simulation results show that the drain saturation current increases and the threshold voltage decreases as drain voltage increases. Compared with the conventional model, the present model may offer more reasonable explanation for the drain-induced threshold voltage roll-off, the Early effect, and the channel length modulation effect. Furthermore, it is expected that the proposed model would provide more reasonable theoretical basis for analyzing various long and short channel InAlAs/InGaAs HEMT devices.

Quantum-Mechanical Modeling and Simulation of Center-Channel Double-Gate MOSFET (중앙-채널 이중게이트 MOSFET의 양자역학적 모델링 및 시뮬레이션 연구)

  • Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.7 s.337
    • /
    • pp.5-12
    • /
    • 2005
  • The device performance of nano-scale center-channel (CC) double-gate (DG) MOSFET structure was investigated by numerically solving coupled Schr$\"{o}$dinger-Poisson and current continuity equations in a self-consistent manner. The CC operation and corresponding enhancement of current drive and transconductance of CC-NMOS are confirmed by comparing with the results of DG-NMOS which are performed under the condition of 10-80 nm gate length. Device optimization was theoretically performed in order to minimize the short-channel effects in terms of subthreshold swing, threshold voltage roll-off, and drain-induced barrier lowering. The simulation results indicate that DG-MOSFET structure including CC-NMOS is a promising candidates and quantum-mechanical modeling and simulation calculating the coupled Schr$\"{o}$dinger-Poisson and current continuity equations self-consistently are necessary for the application to sub-40 nm MOSFET technology.