• Title/Summary/Keyword: threshold current density

Search Result 111, Processing Time 0.025 seconds

Low Threshold Current Density and High Efficiency Surface-Emitting Lasers with a Periodic Gain Active Structure

  • Park, Hyo-Hoon;Yoo, Byueng-Su
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • We have achieved very low threshold current densities with high light output powers for InGaAs/ GaAs surface-emitting lasers using a periodic gain active structure in which three quantum wells are inserted in two-wavelength-thick (2${\lambda}$ ) cavity. Air-post type devices with a diameter of 20~40${\mu}m$ exhibit a threshold current density of 380~410$A/cm^2$. Output power for a 40${\mu}m$ diameter device reaches over 11 mW. A simple theoretical calculation of the threshold and power performances indicates that the periodic gain structure has an advantage in achieving low threshold current density mainly due to the high coupling efficiency between gain medium and optical field. The deterioration of power, expected from the long cavity length of $2{\lambda}$, is negligible.

  • PDF

Development of High-Power AlGaAs SCH-SQW Laser Diode (고출력 AlGaAs SCH-SQW 레이저 다이오드 개발)

  • 손진승;계용찬;권오대
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.27-32
    • /
    • 1993
  • Separate-confinement hetero-structure (SCH) broad area Laser Diodes (LD's) were fabricated from $Al_{0.07}$Ga$_{0.93}$/. As single-quantum-well (SQW) grown by metal organic chemical vapor deposition (MOCVD). Under pulsed operation, we obtained maximum output powers of about 0.8watt/facet and 1.83watt/facet from LD's with 60$\mu$m and 160$\mu$m channel width, respectively, without facet coatings. The differential quantum efficiency of the 60$\mu$m wide LD was about 21.7%/facet and its threshold current density was about 1k [A/cm$^{2}$]. The differential quantum efficiency of the 160$\mu$m wide LD was about 25.6%/facet and its threshold current density was about 1k[A/cm$^{2}$]. The minimum threshold current density of 60$\mu$m wide LD's was 620[A/cm$^{2}$] when the cavity length was 603$\mu$m and the minimum threshold current density of 160$\mu$m wide Ld's was 675[A/cm$^{2}$] when the cavity length was 752$\mu$m. The internal quantum efficienty and the internal loss of both LD's were 92.3% and 18.1cm$^{1}$, respectively.

  • PDF

Threshold Current Reduction of GaAs/AlGaAs Quantum Cascade Laser due to the Deep Mesa Structure (GaAs/AlGaAs Quantum Cascade Laser에서 Deep Mesa 구조에 의한 문턱전류 감소)

  • Han, Il-Ki;Song, Jin-Dong;Lee, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.523-527
    • /
    • 2008
  • GaAs/AlGaAs based quantum cascade lasers were fabricated with two different types of i) the shallow mesa type which was etched up to above active region and ii) the deep mesa type which was etched through active region. While the threshold current density of shallow mesa type was $26-32\;kA/cm^2$, the one of deep mesa type was reduced drastically up to $13\;kA/cm^2$. Such lowered threshold current density at deep mesa type attributed to the reduction of current loss to the lateral directions.

Interface Trap Effects on the Output Characteristics of GaN Schottky Barrier MOSFET (GaN Schottky Barrier MOSFET의 출력 전류에 대한 계면 트랩의 영향)

  • Park, Byeong-Jun;Kim, Han-Sol;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.271-277
    • /
    • 2022
  • We analyzed the effects of the interface trap on the output characteristics of an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET based on the Nit distribution using TCAD simulation. As interface trap number density (Nit) increased, the threshold voltage increased while the drain current density decreased. Under Nit=5.0×1010 cm-2 condition, the threshold voltage was 3.2 V for VDS=1 V, and the drain current density reduced to 2.4 mA/mm relative to the non-trap condition. Regardless of the Nit distribution type, there was an increase in the subthreshold swing (SS) following an increase in Nit. Under U-shaped Nit distribution, it was confirmed that the SS varied depending on the gate voltage. The interface fixed charge (Qf) caused an shift in the threshold voltage and increased the off-state current collectively with the surface trap. In summary, GaN SB-MOSFET can be a building block for high power UV optoelectronic circuit provided the surface state is significantly reduced.

Determination of Critical Chloride Content of Ordinary Portland Cement Concrete by Linear Polarization Technique (선형분극법을 이용한 보통프틀랜드시멘트 콘크리트의 임계염화물량)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.524-528
    • /
    • 2007
  • The results of evaluating steel corrosion in concrete containing chloride content of various levels indicated that the more chloride content in concrete leads to the lower potential and higher corrosion current density. However, the open circuit potential of steel varied with time and exposure condition, and the corelation between the open circuit potential and corrosion current density was not obvious. In order to determine the critical threshold content of chloride of steel corrosion in concrete, the concept of average corrosion current density was employed. The range of critical chloride content in portland cement concretes was about $1.56{\sim}1.77%$($Cl^-$, %, wt of cement content) along with water-cement ratio, and higher water-cement ratio resulted in reduction in critical threshold chloride content.

Advanced Tellurium-Based Threshold Switching Devices for High-Density Memory Arrays (Tellurium 기반 휘발성 문턱 스위칭 및 고집적 메모리용 선택소자 응용 연구)

  • Seunghwan Kim;Changhwan Kim;Namwook Hur;Joonki Suh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.547-555
    • /
    • 2023
  • High-density crossbar arrays based on storage class memory (SCM) are ideally suited to handle an exponential increase in data storage and processing as a central hardware unit in the era of AI-based technologies. To achieve this, selector devices are required to be co-integrated with SCM to address the sneak-path current issue that indispensably arises in such crossbar-type architecture. In this perspective, we first summarize the current state of tellurium-based threshold-switching devices and recent advances in the material, processing, and device aspects. We thoroughly review the physicochemical properties of elemental tellurium (Te) and representative binary tellurides, their tailored deposition techniques, and operating mechanisms when implemented in two-terminal threshold switching devices. Lastly, we discuss the promising research direction of Te-based selectors and possible issues that need to be considered in advance.

Effects of the strain on the threshold current density in InGaAs/InGaAsP multiple quantum well lasers (InGaAs/InGaAsP 다중양자우물 레이저에서 변형이 문턱전류밀도에 미치는 효과)

  • 김동철;유건호;주흥로;김형문;김태환
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 1998
  • Thirteen InGaAs/InGaAsP separate-confinement heterostructure multiple quantum well lasers were designed such that the strain in the active layer from 0.9% compressive strain to 1.4% tensile, and their threshold current density was caluculated to see the effects of strain on the threshold current density. The well width was adjusted such that the bandgap of the quantum well is 1.55 ${\mu}{\textrm}{m}$, For the calculation of the band structure and transition matrix element needed for the gain calculation, a block diagonalized 8$\times$8 second-order $\to{k}.\to{p}$ Hamiltonian was used to incorporate the conduction band nonparabolicity and the valence band mixing. The threshold current density shows discontinuity at 0.4% tensile strain where the first heavy-hole subband and the first light-hole subband cross and at 0.5% tensile strain where the second conduction subband begins to exist. The threshold current density at room temperature has a maximum around these 0.4-0.5% tensile strains, and as strain varies in either direction it decreases first and then increases a little after a local minimum. This calculated trend is consistent with the other reported experimental results. We discussed the results of this calculation in comparison with other theoretical or experimental papers on the effect of strain.

  • PDF

Influence of Channel Length on the Performance of Poly-Si Thin-Film Transistors (다결정 실리콘 박막 트랜지스터의 성능에 대한 채널 길이의 영향)

  • 이정석;장창덕;백도현;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.450-453
    • /
    • 1999
  • In this paper, The relationship between device performance and channel length(1.5-50$\mu$m) in polysilicon thin-film transistors fabricated by SPC technology was Investigated by measuring electric Properties such as 1-V characteristics, field effect mobility, threshold voltage, subthreshold swing, and trap density in grain boundary with channel length. The drain current at ON-state increases with decreasing channel length due to increase of the drain field, while OFF-state current (leakage current) is independent of channel length. The field effect mobility decrease with channel length due to decreasing carrier life time by the avalanche injection of the carrier at high drain field. The threshold voltage and subthreshold swing decrease with channel length, and then increase in 1.5 $\mu$m increase of increase of trap density in grain boundary by impact ionization.

  • PDF

Hot-Carrier-Induced Degradation in Submicron MOS Transistors (Submicron MOS 트랜지스터의 뜨거운 운반자에 의한 노쇠현상)

  • 최병진;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.780-790
    • /
    • 1988
  • We have studied the hot-carrier-induced degradation caused by the high channel electric field due to the decrease of the gate length of MOSFET used in VLSI. Under DC stress, the condition in which maximum substrate current occures gave the worst degradation. Under AC dynamic stress, other conditions, the pulse shape and the falling rate, gave enormous effects on the degradation phenomena, especially at 77K. Threshold voltage, transconductance, channel conductance and gate current were measured and compared under various stress conditions. The threshold voltage was almost completely recovered by hot-injection stress as a reverse-stress. But, the transconductance was rapidly degraded under hot-hole injection and recovered by sequential hot-electron stress. The Si-SiO2 interface state density was analyzed by a charge pumping technique and the charge pumping current showed the same trend as the threshold voltage shift in degradation process.

  • PDF

3-D Characterizing Analysis of Buried-Channel MOSFETs (매몰공핍형 MOS 트랜지스터의 3차원 특성 분석)

  • Kim, M. H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.162-163
    • /
    • 2000
  • We have observed the short-channel effect, narrow-channel effect and small-geometry effect in terms of a variation of the threshold voltage. For a short-channel effect the threshold voltage was largely determined by the DIBL effect which stimulates more carrier injection in the channel by reducing the potential barrier between the source and channel. The effect becomes more significant for a shorter-channel device. However, the potential, field and current density distributions in the channel along the transverse direction showed a better uniformity for shorter-channel devices under the same voltage conditions. The uniformity of the current density distribution near the drain on the potential minimum point becomes worse with increasing the drain voltage due to the enhanced DIBL effect. This means that considerations for channel-width effect should be given due to the variation of the channel distributions for short-channel devices. For CCDs which are always operated at a pinch-off state the channel uniformity thus becomes significant since they often use a device structure with a channel length of > 4 ${\mu}{\textrm}{m}$ and a very high drain (or diffusion) voltage. (omitted)

  • PDF