Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2022M3I7A2079098) and by the research project fund (1.230013.01) of UNIST.
References
- M. M. Waldrop, Nature, 530, 144 (2016). doi: https://doi.org/10.1038/530144a
- C. H. Lam, Proc. 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (IEEE, Shanghai, China, 2010) p. 1080. doi: https://doi.org/10.1109/ICSICT.2010.5667551
- M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, and R.A.M. Wolters, Nat. Mater., 4, 347 (2005). doi: https://doi.org/10.1038/nmat1350
- X. B. Li, N. K. Chen, X. P. Wang, and H. B. Sun, Adv. Funct. Mater., 28, 1803380 (2018). doi: https://doi.org/10.1002/adfm.201803380
- J. J. Yang, M. D. Pickett, X. Li, D.A.A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol., 3, 429 (2008). doi: https://doi.org/10.1038/nnano.2008.160
- N. Sato, F. Xue, R. M. White, C. Bi, and S. X. Wang, Nat. Electron., 1, 508 (2018). doi: https://doi.org/10.1038/s41928-018-0131-z
- J. Hruska, ExtremeTech, Intel, Micron Reveal Xpoint, a New Memory Architecture that Could Outclass DDR4 and NAND, https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand (2015).
- H. Wu, E. Vianello, S. J. Kim, and M. Prezioso, Nat. Commun., 13, 4055 (2022). doi: https://doi.org/10.1038/s41467-022-31598-5
- Q. Xia and J. J. Yang, Nat. Mater., 18, 309 (2019). doi: https://doi.org/10.1038/s41563-019-0291-x
- D. Seong, S. Y. Lee, H. K. Seo, J. W. Kim, M. Park, and M. K. Yang, Materials, 16, 2066 (2023). doi: https://doi.org/10.3390/ma16052066
- M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev. Lett., 37, 1504 (1976). doi: https://doi.org/10.1103/PhysRevLett.37.1504
- D. Ielmini and Y. Zhang, J. Appl. Phys., 102, 054517 (2007). doi: https://doi.org/10.1063/1.2773688
- M. Zhu, K. Ren, and Z. Song, MRS Bull., 44, 715 (2019). doi: https://doi.org/10.1557/mrs.2019.206
- Z. Y. Chen and R. Qin, Phys. Rev. A, 101, 053423 (2020). doi: https://doi.org/10.1103/PhysRevA.101.053423
- W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, Nat. Rev. Mater., 4, 150 (2019). doi: https://doi.org/10.1038/s41578-018-0076-x
- G. W. Burr, R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, and H. Hwang, J. Vac. Sci. Technol. B, 32, 040802 (2014). doi: https://doi.org/10.1116/1.4889999
- T. Kim, Y. Kim, I. Lee, D. Lee, and H. Sohn, Nanotechnology, 30, 13LT01 (2019). doi: https://doi.org/10.1088/1361-6528/aafe13
- J. Yoo, D. Lee, J. Park, J. Song, and H. Hwang, IEEE J. Electron Devices Soc., 6, 821 (2018). doi: https://doi.org/10.1109/JEDS.2018.2856853
- D. Garbin, W. Devulder, R. Degraeve, G. L. Donadio, S. Clima, K. Opsomer, A. Fantini, D. Cellier, W. G. Kim, M. Pakala, A. Cockburn, C. Detavernier, R. Delhougne, L. Goux, and G. S. Kar, Proc. 2019 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, USA, 2019) p. 35.1.1. doi: https://doi.org/10.1109/IEDM19573.2019.8993547
- J. Lee, S. Ban, T. H. Lee, and H. Hwang, IEEE Electron Device Lett., 44, 1468 (2023). doi: https://doi.org/10.1109/LED.2023.3297992
- C. Yoo, J. W. Jeon, S. Yoon, Y. Cheng, G. Han, W. Choi, B. Park, G. Jeon, S. Jeon, W. Kim, Y. Zheng, J. Lee, J. Ahn, S. Cho, S. B. Clendenning, I. V. Karpov, Y. K. Lee, J. H. Choi, and C. S. Hwang, Adv. Mater., 34, 2207143 (2022). doi: https://doi.org/10.1002/adma.202207143
- V. Adinolfi, L. Cheng, M. Laudato, R. C. Clarke, V. K. Narasimhan, S. Balatti, S. Hoang, and K. A. Littau, ACS Nano, 13, 10440 (2019). doi: https://doi.org/10.1021/acsnano.9b04233
- Y. Koo and H. Hwang, Sci. Rep., 8, 11822 (2018). doi: https://doi.org/10.1038/s41598-018-30207-0
- H. Liu, H. Gong, K. Liu, K. Ding, J. Chen, Z. Liu, and F. Rao, Chem. Mater., 35, 6396 (2023). doi: https://doi.org/10.1021/acs.chemmater.3c01097
- S. Ban, S. Lee, J. Lee, and H. Hwang, IEEE Electron Device Lett., 43, 643 (2022). doi: https://doi.org/10.1109/LED.2022.3152207
- M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, and M. Wuttig, Appl. Phys. Lett., 100, 143505 (2012). doi: https://doi.org/10.1063/1.3700743
- L. Wang, W. Cai, D. He, Q. Lin, D. Wan, H. Tong, and X. Miao, IEEE Electron Device Lett., 42, 688 (2021). doi: https://doi.org/10.1109/LED.2021.3064857
- S. A. Chekol, J. Yoo, J. Park, J. Song, C. Sung, and H. Hwang, Nanotechnology, 29, 345202 (2018). doi: https://doi.org/10.1088/1361-6528/aac9f5
- L. Wang, J. Wen, R. Zhu, J. Chen, H. Tong, and X. Miao, Appl. Phys. Lett., 121, 193501 (2022). doi: https://doi.org/10.1063/5.0127177
- J. Shen, S. Jia, N. Shi, Q. Ge, T. Gotoh, S. Lv, Q. Liu, R. Dronskowski, S. R. Elliott, Z. Song, and M. Zhu, Science, 374, 1390 (2021). doi: https://doi.org/10.1126/science.abi6332
- C. Kim, N. Hur, J. Yang, S. Oh, J. Yeo, H. Y. Jeong, B. Shong, and J. Suh, ACS Nano, 17, 15776 (2023). doi: https://doi.org/10.1021/acsnano.3c03559
- T. Kim, C. H. Choi, P. Byeon, M. Lee, A. Song, K. B. Chung, S. Han, S. Y. Chung, K. S. Park, and J. K. Jeong, npj 2D Mater. Appl., 6, 4 (2022). doi: https://doi.org/10.1038/s41699-021-00280-7
- C. Zhao, H. Batiz, B. Yasar, H. Kim, W. Ji, M. C. Scott, D. C. Chrzan, and A. Javey, Adv. Mater., 33, 2100860 (2021). doi: https://doi.org/10.1002/adma.202100860
- S. Ban, J. Lee, T. Kim, and H. Hwang, Proc. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE, Kyoto, Japan, 2023) p. 1. doi: https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185213
- L. Wang, J. Wen, Z. Liu, J. Chen, H. Tong, and X. Miao, IEEE Electron Device Lett., 44, 1096 (2023). doi: https://doi.org/10.1109/LED.2023.3272884
- P. Noe, A. Verdy, F. d'Acapito, J. B. Dory, M. Bernard, G. Navarro, J. B. Jager, J. Gaudin, and J. Y. Raty, Sci. Adv., 6, eaay2830 (2020). doi: https://doi.org/10.1126/sciadv.aay2830