DOI QR코드

DOI QR Code

Advanced Tellurium-Based Threshold Switching Devices for High-Density Memory Arrays

Tellurium 기반 휘발성 문턱 스위칭 및 고집적 메모리용 선택소자 응용 연구

  • Seunghwan Kim (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Changhwan Kim (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Namwook Hur (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Joonki Suh (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 김승환 (울산과학기술원 신소재공학과) ;
  • 김창환 (울산과학기술원 신소재공학과) ;
  • 허남욱 (울산과학기술원 신소재공학과) ;
  • 서준기 (울산과학기술원 신소재공학과)
  • Received : 2023.09.04
  • Accepted : 2023.09.16
  • Published : 2023.11.01

Abstract

High-density crossbar arrays based on storage class memory (SCM) are ideally suited to handle an exponential increase in data storage and processing as a central hardware unit in the era of AI-based technologies. To achieve this, selector devices are required to be co-integrated with SCM to address the sneak-path current issue that indispensably arises in such crossbar-type architecture. In this perspective, we first summarize the current state of tellurium-based threshold-switching devices and recent advances in the material, processing, and device aspects. We thoroughly review the physicochemical properties of elemental tellurium (Te) and representative binary tellurides, their tailored deposition techniques, and operating mechanisms when implemented in two-terminal threshold switching devices. Lastly, we discuss the promising research direction of Te-based selectors and possible issues that need to be considered in advance.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2022M3I7A2079098) and by the research project fund (1.230013.01) of UNIST.

References

  1. M. M. Waldrop, Nature, 530, 144 (2016). doi: https://doi.org/10.1038/530144a
  2. C. H. Lam, Proc. 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (IEEE, Shanghai, China, 2010) p. 1080. doi: https://doi.org/10.1109/ICSICT.2010.5667551
  3. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, and R.A.M. Wolters, Nat. Mater., 4, 347 (2005). doi: https://doi.org/10.1038/nmat1350
  4. X. B. Li, N. K. Chen, X. P. Wang, and H. B. Sun, Adv. Funct. Mater., 28, 1803380 (2018). doi: https://doi.org/10.1002/adfm.201803380
  5. J. J. Yang, M. D. Pickett, X. Li, D.A.A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol., 3, 429 (2008). doi: https://doi.org/10.1038/nnano.2008.160
  6. N. Sato, F. Xue, R. M. White, C. Bi, and S. X. Wang, Nat. Electron., 1, 508 (2018). doi: https://doi.org/10.1038/s41928-018-0131-z
  7. J. Hruska, ExtremeTech, Intel, Micron Reveal Xpoint, a New Memory Architecture that Could Outclass DDR4 and NAND, https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand (2015).
  8. H. Wu, E. Vianello, S. J. Kim, and M. Prezioso, Nat. Commun., 13, 4055 (2022). doi: https://doi.org/10.1038/s41467-022-31598-5
  9. Q. Xia and J. J. Yang, Nat. Mater., 18, 309 (2019). doi: https://doi.org/10.1038/s41563-019-0291-x
  10. D. Seong, S. Y. Lee, H. K. Seo, J. W. Kim, M. Park, and M. K. Yang, Materials, 16, 2066 (2023). doi: https://doi.org/10.3390/ma16052066
  11. M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev. Lett., 37, 1504 (1976). doi: https://doi.org/10.1103/PhysRevLett.37.1504
  12. D. Ielmini and Y. Zhang, J. Appl. Phys., 102, 054517 (2007). doi: https://doi.org/10.1063/1.2773688
  13. M. Zhu, K. Ren, and Z. Song, MRS Bull., 44, 715 (2019). doi: https://doi.org/10.1557/mrs.2019.206
  14. Z. Y. Chen and R. Qin, Phys. Rev. A, 101, 053423 (2020). doi: https://doi.org/10.1103/PhysRevA.101.053423
  15. W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, Nat. Rev. Mater., 4, 150 (2019). doi: https://doi.org/10.1038/s41578-018-0076-x
  16. G. W. Burr, R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, and H. Hwang, J. Vac. Sci. Technol. B, 32, 040802 (2014). doi: https://doi.org/10.1116/1.4889999
  17. T. Kim, Y. Kim, I. Lee, D. Lee, and H. Sohn, Nanotechnology, 30, 13LT01 (2019). doi: https://doi.org/10.1088/1361-6528/aafe13
  18. J. Yoo, D. Lee, J. Park, J. Song, and H. Hwang, IEEE J. Electron Devices Soc., 6, 821 (2018). doi: https://doi.org/10.1109/JEDS.2018.2856853
  19. D. Garbin, W. Devulder, R. Degraeve, G. L. Donadio, S. Clima, K. Opsomer, A. Fantini, D. Cellier, W. G. Kim, M. Pakala, A. Cockburn, C. Detavernier, R. Delhougne, L. Goux, and G. S. Kar, Proc. 2019 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, USA, 2019) p. 35.1.1. doi: https://doi.org/10.1109/IEDM19573.2019.8993547
  20. J. Lee, S. Ban, T. H. Lee, and H. Hwang, IEEE Electron Device Lett., 44, 1468 (2023). doi: https://doi.org/10.1109/LED.2023.3297992
  21. C. Yoo, J. W. Jeon, S. Yoon, Y. Cheng, G. Han, W. Choi, B. Park, G. Jeon, S. Jeon, W. Kim, Y. Zheng, J. Lee, J. Ahn, S. Cho, S. B. Clendenning, I. V. Karpov, Y. K. Lee, J. H. Choi, and C. S. Hwang, Adv. Mater., 34, 2207143 (2022). doi: https://doi.org/10.1002/adma.202207143
  22. V. Adinolfi, L. Cheng, M. Laudato, R. C. Clarke, V. K. Narasimhan, S. Balatti, S. Hoang, and K. A. Littau, ACS Nano, 13, 10440 (2019). doi: https://doi.org/10.1021/acsnano.9b04233
  23. Y. Koo and H. Hwang, Sci. Rep., 8, 11822 (2018). doi: https://doi.org/10.1038/s41598-018-30207-0
  24. H. Liu, H. Gong, K. Liu, K. Ding, J. Chen, Z. Liu, and F. Rao, Chem. Mater., 35, 6396 (2023). doi: https://doi.org/10.1021/acs.chemmater.3c01097
  25. S. Ban, S. Lee, J. Lee, and H. Hwang, IEEE Electron Device Lett., 43, 643 (2022). doi: https://doi.org/10.1109/LED.2022.3152207
  26. M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, and M. Wuttig, Appl. Phys. Lett., 100, 143505 (2012). doi: https://doi.org/10.1063/1.3700743
  27. L. Wang, W. Cai, D. He, Q. Lin, D. Wan, H. Tong, and X. Miao, IEEE Electron Device Lett., 42, 688 (2021). doi: https://doi.org/10.1109/LED.2021.3064857
  28. S. A. Chekol, J. Yoo, J. Park, J. Song, C. Sung, and H. Hwang, Nanotechnology, 29, 345202 (2018). doi: https://doi.org/10.1088/1361-6528/aac9f5
  29. L. Wang, J. Wen, R. Zhu, J. Chen, H. Tong, and X. Miao, Appl. Phys. Lett., 121, 193501 (2022). doi: https://doi.org/10.1063/5.0127177
  30. J. Shen, S. Jia, N. Shi, Q. Ge, T. Gotoh, S. Lv, Q. Liu, R. Dronskowski, S. R. Elliott, Z. Song, and M. Zhu, Science, 374, 1390 (2021). doi: https://doi.org/10.1126/science.abi6332
  31. C. Kim, N. Hur, J. Yang, S. Oh, J. Yeo, H. Y. Jeong, B. Shong, and J. Suh, ACS Nano, 17, 15776 (2023). doi: https://doi.org/10.1021/acsnano.3c03559
  32. T. Kim, C. H. Choi, P. Byeon, M. Lee, A. Song, K. B. Chung, S. Han, S. Y. Chung, K. S. Park, and J. K. Jeong, npj 2D Mater. Appl., 6, 4 (2022). doi: https://doi.org/10.1038/s41699-021-00280-7
  33. C. Zhao, H. Batiz, B. Yasar, H. Kim, W. Ji, M. C. Scott, D. C. Chrzan, and A. Javey, Adv. Mater., 33, 2100860 (2021). doi: https://doi.org/10.1002/adma.202100860
  34. S. Ban, J. Lee, T. Kim, and H. Hwang, Proc. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE, Kyoto, Japan, 2023) p. 1. doi: https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185213
  35. L. Wang, J. Wen, Z. Liu, J. Chen, H. Tong, and X. Miao, IEEE Electron Device Lett., 44, 1096 (2023). doi: https://doi.org/10.1109/LED.2023.3272884
  36. P. Noe, A. Verdy, F. d'Acapito, J. B. Dory, M. Bernard, G. Navarro, J. B. Jager, J. Gaudin, and J. Y. Raty, Sci. Adv., 6, eaay2830 (2020). doi: https://doi.org/10.1126/sciadv.aay2830