• 제목/요약/키워드: three-terminal electrode

검색결과 9건 처리시간 0.02초

그래핀 기반 3단자 NEMS 스위칭 소자 설계 및 동작 시뮬레이션 연구 (Design and Simulation Study on Three-terminal Graphene-based NEMS Switching Device)

  • 권오근;강정원;이규영
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권6호
    • /
    • pp.939-946
    • /
    • 2018
  • 본 논문에서는 그래핀의 우수한 전기적 기계적 특성을 이용하여 정전기 인력에 의하여 휘어지는 그래핀이 수직 팁 게이트에 접촉 여부에 따라서 스위칭이 이루어지도록 조절할 수 있는 3단자 그래핀 NEMS 스위칭 소자에 대하여 연구하였다. 전형적인 MEMS 제작 공정을 이용하여 3단가 그래핀 NEMS 스위칭 소자 제작을 위한 공정을 설계하였고, 그 동작의 핵심 역학은 그래핀에 작용하는 정전기력과 그래핀 자체의 탄성력에 의하여 스우칭의 기계적인 동작이 설명될 수 있었다. 전기적인 동작에서는 그래핀과 핀 전극 사이의 접촉에 의한 접촉 전류와 그래핀이 전극에 접촉하지 않았음에도 그래핀과 핀 전극 사이의 강한 전기장으로 인한 방출전류가 흐를 수 있을 것으로 예상되었다. 실제 기계적인 동작에서 원자단위에서의 움직임을 분석하기 위하여 분자동력학 시뮬레이션 방법을 사용하여 수직 팁 게이트를 가지는 그래핀 기반 3단자 NEMS 스위치 동작에 관하여 연구하여, 기계적인 동작에 따라서 발생되는 다양한 현상들을 분자동력학 시뮬레이션을 통하여 연구함으로써 원자단위에서 이루어지는 다양한 역학들을 살펴보았다.

Three-Terminal Hybrid-aligned Nematic Liquid Crystal Cell for Fast Turn-off Switching

  • Baek, Jong-In;Kim, Ki-Han;Kim, Jae-Chang;Yoon, Tae-Hoon
    • Journal of Information Display
    • /
    • 제10권1호
    • /
    • pp.16-18
    • /
    • 2009
  • A three-terminal hybrid-aligned nematic liquid crystal (3T-HAN LC) cell capable of fast turn-off switching is proposed in this paper. By employing the relaxation process initiated by an electric-field pulse, a fast turn-off time of less than 1 ms can be obtained through optically hidden relaxation. A low operating voltage and high transmittance were confirmed through simulations and experiments.

A Study of Electromechanical Nanotube Memory Device using Molecular Dynamics

  • Lee Jun-Ha;Lee Hoong-Joo;Kwon Oh-Keun;Kang Jeong-Won
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.27-30
    • /
    • 2005
  • A nanoelectromechanical (NEM) switching device based on carbon nanotube (CNT) was investigated using atomistic simulations. The model schematics for a CNT based three-terminal NEM switching device fabrication were presented. for the CNT-based three-terminal NEM switch, the interactions between the CNT-lever and the drain electrode or the substrate were very important. When the electrostatic force applied to the CNT-lever was the critical point, the CNT-lever was rapidly bent because of the attractive foroe between the CNT-lever and the drain. The energy curves for the pull-in and the pull-out processes showed the hysteresis loop that was induced by the adhesion of the CNT on the copper, which was the interatomic interaction between the CNT and the copper.

  • PDF

Pace-maker 사용 4예 경험 (Clinical Use of the Pace-maker in four cases)

  • 이성구
    • Journal of Chest Surgery
    • /
    • 제13권3호
    • /
    • pp.219-228
    • /
    • 1980
  • The heart block and bradyarrhythmia with or without Stokes-Adams attacks are serious, usually terminal events and the immediate mortality is very high. Stimulation with an artificial pacemaker is now an accepted form of treatment in cases of Stokes-Adams syndrome in which medication in unable to produce any lasting improvement. Permanent pacemaker therapy is indicated in these circumstances. The purpose of this report is to describe the successful use of pacemaker in 3 cases of Stokes-Adams syndromes and a case of sinoatrial block with bradyarrhythmia at the Department of Thoracic and Cardiovascular Surgery, Kyungpook National University School of Medicine. Electrode catheter was passed through the right external jugular vein and attached to the endocardial surface of the right ventricle. In case 1, fixed type generator was used at first and for the case 2, 3, 4, and case 1 at second, demand type generators were used. The bipolar electrode catheters were used for the three cases and unipolar electrode catheter for case 4. The results of immediate and late period were satisfactory.

  • PDF

유기 분자선 증착법에 의해 성막된 Pentacene 박막의 물리적, 전기적 특성에 관한 연구 (Physical and electrical characteristics of Pentacene thin films prepared by)

  • 김대엽;김대식;최종선;강도열;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.605-608
    • /
    • 1999
  • We report investigations on a Pentacene thin film as a component for active layer of Organic thin film transistors. Pentacene film was deposited by Organic Molecular Beam Deposition(OMBD) and Al electrode was deposoted by vacuum evaporation. Electrical characterization of Pentacene films were measured by the three-terminal contact resistance methods, as the results contact resistance between pentacene films and the Aluminium electrode is 5.064G$\Omega$. The Al contact with the pentacene shows the bottom contact resistance. From the current-voltage characteristics, electrical conductivity of the Pentacene film is found as ~ 10$^{-4}$ /cm. physical characterization of pentacene films were measured by UV-spectrum and Cyclic-Voltammetry method.

  • PDF

전해액 조성에 따른 구리박막의 전기적 특성 변화에 대한 연구 (Electrical Properties of Electroplated Cu Thin Film by Electrolyte Composite)

  • 송유진;서정혜;이연승;나사균
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.344-348
    • /
    • 2009
  • The electrolyte effects of the electroplating solution in Cu films grown by ElectroPlating Deposition(EPD) were investigated. The electroplated Cu films were deposited on the Cu(20 nm)/Ti (20 nm)/p-type Si(100) substrate. Potentiostatic electrodeposition was carried out using three terminal methods: 1) an Ag/AgCl reference electrode, 2) a platinum plate as a counter electrode, and 3) a seed layer as a working electrode. In this study, we changed the concentration of a plating electrolyte that was composed of $CuSO_4$, $H_2SO_4$ and HCl. The resistivity was measured with a four-point probe and the material properties were investigated by using XRD(X-ray Diffraction), an AFM(Atomic Force Microscope), a FE-SEM(Field Emission Scanning Electron Microscope) and an XPS(X-ray Photoelectron Spectroscopy). From the results, we concluded that the increase of the concentration of electrolytes led to the increase of the film density and the decrease of the electrical resistivity of the electroplated Cu film.

직류전기장에 의한 기포의 변형과 이탈에 관한 연구 (A Study on the Bubble Deformation and Departure Under DC Electric Field)

  • 권영철;김무환;강인석;김석준
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1518-1528
    • /
    • 1995
  • The deformation and departure processes of a bubble attached to the wall are studied experimentally and numerically to understand the phenomena of the nucleate boiling heat transfer enhancement under DC electric field. An air-bubble is injected in a dielectric liquid with different electric fields generated by changing three types of electrode system (Type 1,2 and 3) in the bubble generator. Experimental variables are the electric field strength and the distance and the shape of the electrodes under DC electric field. From experimental results, it is observed that the bubble under Dc electric field is elongated in the same direction as the electric field and the contact angle increases. For the parallel plate electrode which generates a uniform electric field, bubble departure volume doesn't seem to decrease within our experimental range. However, when a needle is raised a few millimeters from the lower electrode to make a nonuniform electric field around the needle, bubble departure volume decreases continuously with the increase of an applied voltage. The reduction effect of bubble departure volume is the most effective under a strong nonuniform electric field generated with Type 3. As the nonuniformity of the electric field due to the shape of a electrode increases, the terminal velocity and the acceleration of a bubble increase largely. For the comparison with visualization results, the deformation of a bubble attached to the electrode is carried out by a numerical method. Numerical results show good agreement qualitatively with experimental results.

황동단자에 대한 인쇄형 유연촉각센서의 출력 특성 (Study on Output Characteristics of Printed Flexible Tactile Sensors Connected to Brass Terminals)

  • 김진동;배용환;이인환;김호찬
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.65-70
    • /
    • 2020
  • While the demand for robots in the manufacturing industry has dramatically increased, the industrial robots' functionality is mainly determined by the effector attached to the end of their arms. They need a flexible gripping system that can act as a human hand and easily grasp a variety of objects, which requires resilient sensors. This study clarifies the electrical output characteristics of elastic tactile sensors according to contact terminals because the output characteristics of the tactile sensors vary greatly, depending on the contact material and the method of contact with the conductive wire. Our research considers the Three Roll Mill and Paste Mixer as the dispersion medium, and a nickel- and gold-plated brass electrode as the contact terminal.

Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice

  • El-Demsisy, H.A.;Asham, M.D.;Louis, D.S.;Phillips, A.H.
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.8-15
    • /
    • 2017
  • The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).