• Title/Summary/Keyword: three-phase dc-dc converter

Search Result 327, Processing Time 0.025 seconds

3상 PWM 컨버터의 모델링 및 해석 (Modeling and Analysis of Three Phase PWM Converter)

  • 조국춘;박채운;최종묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

연료전지용 3상 전류형 능동클램프 DC-DC 컨버터 (A Three-phase Current-fed DC-DC Converter with Active Clamp)

  • 차한주;최정완;윤기갑
    • 전력전자학회논문지
    • /
    • 제12권6호
    • /
    • pp.456-464
    • /
    • 2007
  • 본 논문에서는 새로운 연료전지용 3상 전류형 능동클램프 DC-DC 컨버터를 제안한다. 전류형 컨버터 구조에 능동클램프 회로를 채용하여 과도기에 발생하는 서지전압을 저감하였고 모든 스위치에서 영전압 스위칭을 하며, 그 장점으로 : 연속적인 입력전류, 전압 오버슈트 제거, 영전압 턴 온 스위칭, 고주파 변압기 1차/2차 측에 부가적인 스너버 회로의 필요성 제거, 소프트 스위칭에 의한 저속 다이오드 적용 등이 있다. 더구나 대용량 발전 시스템에 적합하도록 전류형 컨버터 구조와 3상 전력변환 회로를 결합하였다. 3상 전력변환 적용의 장점은 : 입력전류 및 출력전압 주파수의 3배 증가, 스위치에 흐르는 RMS 전류 저감, 필터소자 용량 및 부피 감소, 고주파 변압기 이용률 증가, 단순화된 전력회로에 따른 전체 크기 축소 및 신뢰성 향상 등이 있다. 제안하는 3상 전류형 능동 클램프 DC-DC 컨버터는 이러한 장점들 때문에 발전용 연료전지 시스템의 승압형 DC-DC 컨버터에 적합하며 대용량 태양전지 발전 시스템 및 배터리 충전기 등에도 적용할 수 있다. 새로운 3상 DC-DC 컨버터와 3상 PWM 알고리즘을 제안하며, 시뮬레이션과 프로토타입의 제작 및 실험을 통하여 그 성능을 평가 및 확인하였다.

3상 변압기를 이용한 고밀도 양방향 전력변환기 (Three-Phase High-Power-Density Bidirectional DC-DC Converter)

  • 레동부;최우석;김선필;박성준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2014
  • This paper presents a three-phase high-power-density bidirectional DC-DC converter. The converter employs dual three-phase active bridges and a three-phase transformer. The presented converter is controlled by two symmetric PWM modules and phase between two symmetric PWM modules to control the power flow. Simulation is included to verify the presented converter.

  • PDF

Highly Efficient AC-DC Converter for Small Wind Power Generators

  • Ryu, Hyung-Min
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.188-193
    • /
    • 2011
  • A highly efficient AC-DC converter for small wind power generation systems using a brushless DC generator (BLDCG) is presented in this paper. The market standard AC-DC converter for a BLDCG consists of a three-phase diode rectifier and a boost DC-DC converter, which has an IGBT and a fast recovery diode (FRD). This kind of two-stage solution basically suffers from a large amount of conduction loss and the efficiency greatly decreases under a light load, or at a low current, because of the switching devices with a P-N junction. In order to overcome this low efficiency, especially at a low current, a three-phase bridgcless converter consisting of three upper side FRDs and three lower side Super Junction FETs is presented. In the overall operating speed region, including the cut-in speed, the efficiency of the proposed converter is improved by up to 99%. Such a remarkable result is validated and compared with conventional solutions by calculating the power loss based on I-V curves and the switching loss data of the adopted commercial switches and the current waveforms obtained through PSIM simulations.

예측 제어 기법을 적용한 3상 PWM AC/DC 콘버터의 역률개선 (Power Factor Correction of the Three Phase PWM AC/DC Converter Using Predicted Control Strategy)

  • 백종현;최종수;홍성태
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, the three phase AC to DC boost converter has become one of the most widely used power converters as DC power source in the industry applications. In this paepr, a three phase PWM AC toDC boost converter that operates with unity power factor and sinusodial input currents is presented. The current control of the converter is based onthe predicted current control strategy with fixed switching frequency and the input current tracks the reference cuent within one sampling time interval. Therefore, by using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the DC link.

  • PDF

Current-Programmed Control of Three Phase PWM AC-AC Boost Converter

  • Choi, Nam-Sup;Li, Yulong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.414-416
    • /
    • 2005
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation. Finally, the experiment result shows the validity of the proposed scheme.

  • PDF

Comparison of PWM Strategies for Three-Phase Current-fed DC/DC Converters

  • Cha, Han-Ju;Choi, Soon-Ho;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.363-370
    • /
    • 2008
  • In this paper, three kinds of PWM strategies for a three-phase current-fed dc/dc converter are proposed and compared in terms of losses and voltage transfer ratio. Each PWM strategy is described graphically and their switching losses are analyzed. With the proposed PWM C strategy, one turn-off switching of each bridge switch is eliminated to reduce switching losses under the same switching frequency. In addition, RMS current through the bridge switches is lowered by using parallel connection between two bridge switches and thus, conduction losses of the switches are reduced. Further, copper losses of the transformer are decreased due to the reduced RMS current of each transformer's winding. Therefore, total losses are minimized and the efficiency of the converter is improved by using the proposed PWM C strategy. Digital signal processor (DSP: TI320LF2407) and a field-programmable gate array (FPGA: EPM7128) board are used to generate PWM patterns for three-phase bridge and clamp MOSFETs. A 500W prototype converter is built and its experimental results verify the validity of the proposed PWM strategies.

에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터 (Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber)

  • 허예창;주종성;말론;김은수;강철하;이승민
    • 전력전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

영전압.영전류 스위칭 3 레벨 DC/DC 컨버터 (Zero-Voltage Zero-Current Switching Three Level DC/DC Converter)

  • 김은수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권12호
    • /
    • pp.682-690
    • /
    • 2002
  • The conventional three-level high frequency phase-shifted dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval.. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved three-level Zero Voltage and Zero Current Switching (ZVZCS) dc/dc converter using a tapped inductor, a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 7㎾, 30KHz experimental prototype.