• Title/Summary/Keyword: three-phase dc-dc converter

Search Result 327, Processing Time 0.028 seconds

Drive of induction motor using three-phase inverter and voltage type PWM single-phase converter (전압형 PWM 단상 컨버터와 3상 인버터를 이용한 유도전동기의 운전)

  • 문상필;서기영;이현우;강욱중
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.18-24
    • /
    • 2001
  • This paper deals with a three-phase Pulse width Modulation(PWM) voltage souse inverter-induction motor drive with a single-phase PWM converter. The single-phase system has the pulsating instantaneous power with twice the frequency of the ac source. The power pulsation generates the dc voltage pulsation of the converter. In result, the waveforms of the inverter output current and voltage are distorted. The steady-stare operations of the system are analyzed by employing a state-spare method Such everything confirmed it's validity throughout simulation and experiment.

  • PDF

Implementation of a 35KVA Converter Base on the 3-Phase 4-Wire STATCOMs for Medium Voltage Unbalanced Systems

  • Karimi, Mohammad Hadi;Zamani, Hassan;Kanzi, Khalil;Farahani, Qasem Vasheghani
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.877-883
    • /
    • 2013
  • This paper discussed a transformer-less shunt static synchronous compensator (STATCOM) with consideration of the following aspects: fast compensation of the reactive power, harmonic cancelation and reducing the unbalancing of the 3-phase source side currents. The STATCOM control algorithm is based on the theory of instantaneous reactive power (P-Q theory). A self charging technique is proposed to regulate the dc capacitor voltage at a desired level with the use of a PI controller. In order to regulate the DC link voltage, an off-line Genetic Algorithm (GA) is used to tune the coefficients of the PI controller. This algorithm arranged these coefficients while considering the importance of three factors in the DC link voltage response: overshoot, settling time and rising time. For this investigation, the entire system including the STATCOM, network, harmonics and unbalancing load are simulated in MATLAB/SIMULINK. After that, a 35KVA STATCOM laboratory setup test including two parallel converter modules is designed and the control algorithm is executed on a TMS320F2812 controller platform.

Control Algorithm for Circulating Currents in Parallel Operation of Three-Phase AC/DC Converter for DC Distribution System (DC 배전용 3상 AC/DC 컨버터의 병렬 운전시 발생하는 순환전류 제어 알고리즘)

  • Jung, Chul-Ho;Shin, Soo-Cheol;Jung, Tae-Bok;Lee, Taeck-Kie;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.167-168
    • /
    • 2011
  • 본 논문에서는 여러 대의 전력변환장치를 모듈화 하여 병렬 운전할시 필연적으로 발생하게 되는 순환전류를 억제하기 위한 제어 기법을 제안하였다. 이에 따라 병렬 운전 시스템이 갖는 응답 특성 및 정상상태 동작 등의 타당성을 시뮬레이션 모델을 통하여 검토하였다.

  • PDF

Virtual Flux Estimation Using Modified Integrator of a Three-Phase AC/DC Converter for Direct Power Control (3상 AC/DC 컨버터의 직접 전력 제어를 위해 개선된 적분기를 적용한 가상 자속 추정 기법)

  • Seo, Seung Gyu;Cho, Yongsoo;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.399-400
    • /
    • 2015
  • 본 논문에서는 개선된 적분기를 이용하여 3상 AC/DC 컨버터의 직접 전력 제어(Direct Power Control)를 위한 가상 자속의 추정 기법을 제안한다. 기존의 가상 자속 추정을 위해 사용하는 일반적인 적분기는 dc drift 문제를 유발한다. 이는 보통 저역 통과 필터를 사용으로 보완이 가능하지만, 이 경우 추정된 자속은 크기와 위상의 오차를 갖는다. 따라서 제안하는 기법은 각속도 오차가 가상 자속의 위상 지연 오차와 비례하는 관계를 분석하고 이를 보상하여 속응성 및 안정성을 향상시킨다. 시뮬레이션을 통하여 제안한 기법의 타당성을 검증한다.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery (전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어)

  • Kang, Taewon;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

Variable Charger of Vehicle using Relay (릴레이를 이용한 차량용 배터리의 가변 충전기)

  • Song, Sung-Geun;Chung, Seung-Tae;Kang, Sung-Gu;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.47-56
    • /
    • 2012
  • This research is to develop satiable battery charger with a variety of capacity and voltage specifications of battery. For this, voltage or current were controlled through buck converter which is DC voltage that already received three-phase at primary side and passed bridge rectifier diode. And, it was comprised of full-bridge converter and HFTR for insulation and a square wave AC. The transformer primary side was comprised in series to divide certain charging current and the secondly side was comprised of 6 fixed transformers so that they can generate certain amount of power and various output voltage through relay parallel compound 6 DC Link outputs. To confirm such structure's verification and validity, simulation with PSIM was conducted, and validity of proposed variable charger system was verified through 3kW stack production.

Single Sensor Current Control for Three-Phase Voltage-Source PWM Converters Using a Predictive State Observer (예측 상태 관측기를 이용한 3상 전압 원 PWM 컨버터의 단일 센서 전류 제어)

  • 이우철;현동석;이택기
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.489-492
    • /
    • 1999
  • This paper proposes a control method for three-phase voltage-source PWM converters using only a single current sensor in the DC link. A predictive current controller for the voltage-source PWM converter is used so that all phase currents can be reconstructed in a switching period although one or two of active vectors are applied only for a short time. Compensation of the 2 step delays is also included. In this paper single sensor current control using predictive state observer will be discussed, and investigated experimentally.

  • PDF

Jeju 80kV HVDC Controller Modeling Using PSCAD/EMTDC Program (PSCAD/EMTDC 프로그램을 이용한 제주 80kV HVDC 제어기 모델링)

  • Choi, Soon-Ho;Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.533-541
    • /
    • 2011
  • This paper studies modeling of Jeju 80kV HVDC system and its controller by using PSCAD/EMTDC program. Reduced ac network is applied to verify interaction between ac network and dc system. Design parameter is applied to the converter transformer, harmonic filter and dc transmisstion line to simulate dc system. HVDC controller is divided into a rectifier controller and a inverter controller according to the converter operating mode. The inverter controller is composed of current control, voltage control and extingtion angle control. The rectifier controller is composed of current control and voltage control. Both controller has VDCOL characteristics so that current order is dependant on voltage variation. Step response, ac network single phase fault, three phase fault is simulated to verify the dynamic performance of controller model in both transient state and steady state.

Operation and Performance Analysis of New Bidirectional Intelligent Semiconductor Transformer (새로운 양방향 지능형 반도체 변압기의 동작과 성능 분석)

  • Kim, Do-Hyun;Lee, Byung-Kwon;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.169-177
    • /
    • 2013
  • This paper proposes a new configuration of bidirectional intelligent semiconductor transformer with rating of 1.9kV/127V, 2kVA. The proposed transformer consists of high-voltage high-frequency AC-DC rectifier, and low-voltage DC-DC and DC-AC converters. The operational feasibility of proposed transformer was verified by computer simulation with PSCAD/EMTDC software. Based on the simulation results, a hardware prototype with rating of 1.9kV/127V, 2kVA was built and tested in the lab to confirm the feasibility of hardware implementation. Using three units of this transformer, a 3-phase transformer with rating of 3.3kV/220V, 6kVA can be built.