• Title/Summary/Keyword: three-phase dc-dc converter

Search Result 327, Processing Time 0.031 seconds

A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구)

  • Son, Yung-Deug;Ku, Hyun-Keun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

Novel Third Harmonic Current Injection Technique for Harmonic Reduction of Controlled Converters

  • Eltamaly, Ali M.
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.925-934
    • /
    • 2012
  • Three-phase controlled converters have many applications in the utility interfacing of renewable energy sources and adjustable speed drives as a rectifier or inverter. The utility line currents of these converters have a high harmonic distortion, which is more than the harmonic standards. This paper introduces a new technique for circulating the third harmonic currents from the dc-link to the line currents to reduce their harmonic contents. The proposed system uses a single-phase PWM converter to control the angle and amplitude of the injection current for each of the firing angle of a three-phase converter. A detailed analysis is introduced to achieve a relationship between the firing angle of the three-phase controlled converter and the power angle of the PWM converter. In addition, a detailed design for the other injection path components is introduced. A simulation and experimental work is introduced to prove the mathematical derivations. Analysis, simulation and experimental results prove the superiority of the proposed technique.

Power Factor Correction of Three Phase DCM Converter by 3-stage Operation (3-stage 운전에 의한 3상 DCM컨버터의 입력 역률개선)

  • 최해룡;구영모;김응진;목형수;최규하;김규식;원충연
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.659-662
    • /
    • 1999
  • As utility pollution take a growing interest, ac/dc converter optimizing utility condition has been vigorously studied in decades. In this paper three phase DCM converter is analyzed and equations for average input currents are presented. Also relationships of voltage gain & duty according to angular velocity are presented and variable frequency controller is implemented using reset integrator which is designed in detail. In result power factor and THD characteristics of 3-stage and 4-stage operation ae compared respectively.

  • PDF

Static Var Compensator Using a Three Phase PWM Watkins-Johnson AC-AC Converter (3상 PWM Watkins-Johnson AC-AC 컨버터를 이용한 무효전력보상기)

  • Choi, Nam-Sup;Li, Yulong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.960-961
    • /
    • 2006
  • In this paper, a static var compensator using three phase PWM Watkins-Johnson AC-AC converter is presented. The PWM Watkins-Johnson AC-AC converter is modelled by using circuit DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

Circuit Topology and Characteristics of Three Phase PWM Noninverting Buck-Boost AC-AC Converter (3상 PWM 비반번 Buck-Boost AC-AC 컨버터의 회로구성과 특성)

  • Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.116-118
    • /
    • 2005
  • In this paper, a three phase PWM noninverting Buck-Boost AC-AC converter for WCF applications is presented. The PWM noninverting Buck-Boost AC-AC converter is modelled by using vector DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

Circuit Topology and Characteristics of Three Phase PWM Watkins-Johnson AC-AC Converter (3상 PWM Watkins-Johnson AC-AC 컨버터의 회로구성과 특성)

  • Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.119-121
    • /
    • 2005
  • In this paper, a three phase PWM Watkins-Johnson AC-AC converter for VVCF applications is presented. The PWM Watkins-Johnson AC-AC converter is modelled by using vector DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

Circuit Topology and Characteristics of Three Phase PWM Zeta AC-AC Converter (3상 PWM Zeta AC-AC 컨버터의 회로구성과 특성)

  • Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.122-124
    • /
    • 2005
  • In this paper, a three phase PWM Zeta AC-AC converter for VVCF applications is presented. The PWM Zeta AC-AC converter is modelled by using vector DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

A study on neutral-point voltage balance with harmonic component injection for single phase three-level NPC converter (고조파 주입을 통한 단상 3레벨 NPC 컨버터 중성점 전압 밸런싱 연구)

  • Kang, Kyoung Pil;Kim, Ho-Sung;Cho, Jintae;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.316-317
    • /
    • 2018
  • This paper propse the DC link capacitor voltage balancing control for three level neutral point clamped converter with harmonic component injection method. The injcetion voltage consists of harmonic component and DC link capacitor voltage difference. Theoretical analysis is provided to balance the DC link voltage, and it shows that harmonic component compensates the unbalanced condition between the capacitors. Both simulations and experiments are carried out to show that the voltage unbalance have been decreased by the proposed method.

  • PDF

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

Analysis of Neutral Point Current in T-Type Three-Level PWM Converter (T-type 3-레벨 PWM 컨버터의 중성점 전류 분석)

  • Lee, Kui-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.68-71
    • /
    • 2020
  • As a T-type three-level PWM converter has several intrinsic advantages, it has been widely studied for many applications. However, it requires an additional voltage control loop for balancing each DC link voltage. Generally, satisfying this requirement involves the use of an offset voltage to provide a neutral point current without affecting other variables, such as the total DC link voltage and three-phase input current. In this study, the theoretical relationship between the offset voltage and the neutral point current is analyzed. The results can be beneficial for effective voltage balancing controller design. The effectiveness of the analytical modeling is verified by simulation and experimental results.