• 제목/요약/키워드: three-electrode system

검색결과 194건 처리시간 0.027초

조기화재 감시시스템을 위한 CO센서의 시그널컨디셔너 성능개선 (Performance Improvement of CO Sensor Signal Conditioner for Early Fire Detection System)

  • 박종찬;손진근
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.82-87
    • /
    • 2017
  • This paper presents performance improvement of CO gas sensor signal conditioner for early fire warning system. The warning system is based on the CO sensor and its advanced signal conditioning modules network that employ electochemical gas sensor. The electochemical has advantage of having a linear output and operating with a low consumption and fast response. This electrochemical gas sensor contains a gas membrane and three electrodes(working, counter, reference electrode) in contact with an electrolyte. To use a three-electrode sensor, a voltage has to be applied between the working and the reference electrode according to the specification of the sensor. In this paper, we designed these requirements that should be considered in temperature compensation algorithm and electrode measurement of CO sensor modules by using advanced signal conditioning method included 3-electrode. Simulation and experimental results show that signal conditioner of CO sensor module using 3-electrode have a advantage linearity, sensitivity and stability, fast response etc..

Effects of External Current Constraint on the Belousov-Zhabotinskii System Measured by a Pt Electrode

  • Wei, Guoying;Jin, Yongdong;Ge, Hongliang;Luo, Jiuli
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.543-547
    • /
    • 2005
  • The Belousov-Zhabotinskii system measured by a Pt electrode is investigated under external electrode current constraint. A dynamical analysis of the electrode reaction phase has been made by means of a linearized stability criterion valid for three-variable system. It turns out that limit cycle oscillatory regime and dynamical behaviors of the electrode reaction phase have been degenerated under periodical electrode current.

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권1호
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

다중결함에 의한 부분방전 패턴특성 (PD Characteristics of Multi-Defects System)

  • 이준호;이철규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2411-2413
    • /
    • 1999
  • Regarding the application of diagnistic technology using PD signal to power apparatus, it is necessary to discriminate the type of defect as well as to determine whether the PD occurs or not. In this research, PD characteristics of multi-defects insulating system were presented, the PD signals were detected from three kinds of electrode systems, IEC(b), needle-plane and CIGRE method II. To make multi-defect systems artificially, we combined three electrode systems and applied same test voltage simultaneously.

  • PDF

정서 인지를 위한 뇌파 전극 위치 및 주파수 특징 분석 (Analysis of Electroencephalogram Electrode Position and Spectral Feature for Emotion Recognition)

  • 정성엽;윤현중
    • 산업경영시스템학회지
    • /
    • 제35권2호
    • /
    • pp.64-70
    • /
    • 2012
  • This paper presents a statistical analysis method for the selection of electroencephalogram (EEG) electrode positions and spectral features to recognize emotion, where emotional valence and arousal are classified into three and two levels, respectively. Ten experiments for a subject were performed under three categorized IAPS (International Affective Picture System) pictures, i.e., high valence and high arousal, medium valence and low arousal, and low valence and high arousal. The electroencephalogram was recorded from 12 sites according to the international 10~20 system referenced to Cz. The statistical analysis approach using ANOVA with Tukey's HSD is employed to identify statistically significant EEG electrode positions and spectral features in the emotion recognition.

나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정 (Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate)

  • 민동준;김철용;안준영;조수빈;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.104-113
    • /
    • 2018
  • A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

아조벤젠기를 가진 지방산 Langmuir-blodgett막의 전기화학적 특성 (Electrochemical properties of Langmuir-blodgett Films of Fatty acid containing Azobezene)

  • 박근호;김범준;손태철;이경구;주찬홍;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.459-462
    • /
    • 2001
  • We have investgated the photoisomerization using light irradiation 8A5H LB film accumulated by monolayer and three layers on an ITO. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in 0.1mol/L NaClO$_4$ solution. The scan rate was 100mv/s.

  • PDF

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell

  • Yoon, Seok-Min;Choi, Chang-Ho;Kim, Mi-A;Hyun, Moon-Sik;Shin, Sung-Hye;Yi, Dong-Heui;Kim, Hyung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.110-115
    • /
    • 2007
  • Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.

탄뎀 가스메탈아크 용접의 토치 극간거리에 관한 실험적 연구 (A Experiment Study of Torch Distance on Automated Tandem GMA Welding System)

  • 이지혜;김일수;정성명;이종표;김영수;박민호
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.49-55
    • /
    • 2012
  • The tandem welding process is one of the most efficient welding processes widely used in material joining technique such as manufacturing of strong and durable structures. It facilitates high rate of joint filling with little increase in the overall rate of heat input due to the simultaneous deposition from two electrode wires. The two electrodes in tandem welding process helps in high-efficiency and high productive of welding process. In this study a automated tandem welding system is developed to determine the correlation between cathode and anode and compared with current ratio of the two electrode torch. Three different inter-electrode distances were chosen, 25mm, 35mm and 45mm to perform the experiment with three different current ratio. From the experiment results, the current ratio between two torch has a large impact on width, height and depth of penetration. In addition, a stable bead geometry is obtained when inter-electrode distance is 35mm.

Self-Supporting 3D-Graphene/MnO2 Composite Supercapacitors with High Stability

  • Zhaoyang Han;Sang-Hee Son
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.175-185
    • /
    • 2023
  • A hybrid supercapacitor is a promising energy storage device in view of its excellent capacitive performance. Commercial three-dimensional foam nickel (Ni) can be used as an ideal framework due to an interconnected network structure. However, its application as an electrode material for supercapacitors is limited due to its low specific capacity. Herein, we report a successful growth of MnO2 on the surface of graphene by a one-step hydrothermal method; thus, forming a three-dimensional MnO2-graphene-Ni hybrid foam. Our results show that the mixed structure of MnO2 with nanoflowers and nanorods grown on the graphene/Ni foam as a hybrid electrode delivers the maximum specific capacitance of 193 F·g-1 at a current density 0.1 A·g-1. More importantly, the hybrid electrode retains 104% of its initial capacitance after 1,000 charge-discharge cycles at 1 A·g-1; thus, showing the potential application as a stable supercapacitor electrode.