• Title/Summary/Keyword: three-dimensional visualization

Search Result 393, Processing Time 0.119 seconds

Lymphovenous anastomoses with three-dimensional digital hybrid visualization: improving ergonomics for supermicrosurgery in lymphedema

  • Will, Patrick A.;Hirche, Christoph;Berner, Juan Enrique;Kneser, Ulrich;Gazyakan, Emre
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.427-432
    • /
    • 2021
  • The conventional approach of looking down a microscope to perform microsurgical procedures is associated with occupational injuries, anti-ergonomic postures, and increased tremor and fatigue, all of which predispose microsurgeons to early retirement. Recently, three-dimensional (3D) visualization of real-time microscope magnification has been developed as an alternative. Despite its commercial availability, no supermicrosurgical procedures have been reported using this technology to date. Lymphovenous anastomoses (LVAs) often require suturing vessels with diameters of 0.2-0.8 mm, thus representing the ultimate microsurgical challenge. After performing the first documented LVA procedure using 3D-augmented visualization in our unit and gaining experience with this technique, we conducted an anonymized in-house survey among microsurgeons who had used this approach. The participants considered that 3D visualization for supermicrosurgery was equivalent in terms of handling, optical detail, depth resolution, and safety to conventional binocular magnification. This survey revealed that team communication, resident education, and ergonomics were superior using 3D digital hybrid visualization. Postoperative muscle fatigue, tremor, and pain were also reduced. The major drawbacks of the 3D visualization microscopic systems are the associated costs, required space, and difficulty of visualizing the lymphatic contrast used.

Visualization of three-dimensional medical information based on Shear-Warp Volume Rendering (Shear-Warp Volume Rendering에 의한 3차원 의료영상 정보 표현)

  • Chae Eunmi;Huh Junsung;Sah Jongyoub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.158-162
    • /
    • 1999
  • This thesis presents applications of three dimensional visualization technique based on shear-warp volume rendering to medical information. Volume rendering is compared to surface rendering and acceleration technique is also presented. The presented rendering techniques by using three-dimensional arrays of data are a widely used representation for computational fluid dynamics and geological structures as well as medical information.

  • PDF

PIV Measurements of Three-Dimensional Wake Around a Road Vehicle (자동차 후류에 대한 3차원 유동의 PIV 측정)

  • Kim Jinseok;Kim Sungcho;Sung Jaeyong;Kim Jeongsoo;Choi Jongwook
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.1-4
    • /
    • 2004
  • The PIV measurements are performed to get the quantitative flow visualization around a road vehicle. The model scaled with 1/48 is located in the middle test section of the closed-loop water tunnel and the measuring system consists of CCD camera, diode laser, synchronizer, and computer. The experimental data are obtained at two Reynolds numbers of 50,000 and 100,000 based on the model length. The quasi-three-dimensional isovorticity surfaces, based on two-dimensional velocity field data, are generated. There is little difference between the results in part of the recirculation region and the vorticity contour according to the Reynolds number. Also a little bit complicated three dimensional flows are predicted behind the road vehicle.

  • PDF

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Flow Visualization Model Based on B-spline Volume (비스플라인 부피에 기초한 유동 가시화 모델)

  • 박상근;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1997
  • Scientific volume visualization addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for looking closely into structures and understanding their complexity and dynamics. In the past several years, a tremendous amount of research and development has been directed toward algorithms and data modeling methods for a scientific data visualization. But there has been very little work on developing a mathematical volume model that feeds this visualization. Especially, in flow visualization, the volume model has long been required as a guidance to display the very large amounts of data resulting from numerical simulations. In this paper, we focus on the mathematical representation of volumetric data sets and the method of extracting meaningful information from the derived volume model. For this purpose, a B-spline volume is extended to a high dimensional trivariate model which is called as a flow visualization model in this paper. Two three-dimensional examples are presented to demonstrate the capabilities of this model.

  • PDF

Development of 3D Visualization Technology for Meteorological Data Using IDL (IDL을 이용한 기상자료 3 차원 가시화 기술개발 연구)

  • Joh Min-su;Yun Ja-Young;Seo In-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.77-80
    • /
    • 2002
  • The recent 3D visualization such as volume rendering, iso-surface rendering or stream line visualization gives more understanding about structures or distribution of data in a space and, moreover, the real-time rendering of a scene enables the animation of time-series data. Because the meteorological data is frequently formed as multi-variables, 3-dimensional and time-series data, the spatial analysis, time-series analysis, vector display, and animation techniques can do important roles to get more understanding about data. In this research, our aim is to develop the 3-dimensional visualization techniques for meteorological data in the PC environment by using IDL. The visualization technology from :his research will be used as basic technology not only for the deeper understanding and the more exact prediction about meteorological environments but also for the scientific and spatial data visualization research in any field from which three-dimensional data comes out such as oceanography, earth science, or aeronautical engineering.

  • PDF

Three-Dimensional Shape Reconstruction from Images by Shape-from-Silhouette Technique and Iterative Triangulation

  • Cho, Jung-Ho;Samuel Moon-Ho Song
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1665-1673
    • /
    • 2003
  • We propose an image-based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape-from-silhouette (SFS) technique, and the efficacy of the SFS method is tested using a sample data set. The extracted three-dimensional shape is modeled with polygons generated by a new iterative triangulation algorithm, and the polygon model can be exported to commercial software. The proposed system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes, including three dimensional design applications such as 3-D animation and 3-D games.

Three-Dimensional Data Visualization Program Combined with Position Tracking System Using Stereo Cameras (스테레오 카메라에 의한 위치 추적과 3차원 데이터 후처리 프로그램의 연동)

  • Kim, Byoung-Soo;Seo, Jin-Won;Lee, Bong-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.114-119
    • /
    • 2006
  • Data post-processing programs are used for analysis and visualization of the data obtained from computational fluid methods or flow field experiments. In this paper 3D data visualization system which combines a data visualization program with position tracking system using stereo cameras is introduced. This system offers virtual environment for visualization and analysis of three dimensional data.

An Easy-to-Use Three-Dimensional Molecular Visualization and Analysis Program: POSMOL

  • Lee, Sang-Joo;Chung, Hae-Yong;Kim, Kwang S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1061-1064
    • /
    • 2004
  • Molecular visualization software has the common objective of manipulation and interpretation of data from numerical simulations. They visualize many complicated molecular structures with personal computer and workstation, to help analyze a large quantity of data produced by various computational methods. However, users are often discouraged from using these tools for visualization and analysis due to the difficult and complicated user interface. In this regard, we have developed an easy-to-use three-dimensional molecular visualization and analysis program named POSMOL. This has been developed on the Microsoft Windows platform for the easy and convenient user environment, as a compact program which reads outputs from various computational chemistry software without editing or changing data. The program animates vibration modes which are needed for locating minima and transition states in computational chemistry, draws two and three dimensional (2D and 3D) views of molecular orbitals (including their atomic orbital components and these partial sums) together with molecular systems, measures various geometrical parameters, and edits molecules and molecular structures.

Visualization of three-dimensional data with virtual reality (가상현실을 이용한 3차원 데이터 시각화)

  • Lee, Jae Eun;Ahn, Sojin;Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.345-362
    • /
    • 2017
  • Various data visualization methods are utilized to analyze a huge amount of data. Among various methods, a three-dimensional image requires the rotation of the image to show a stereo image on a two-dimensional screen. This study discusses two methods of batch method and real-time method, which make it possible to construct of stereo images to improve the restriction of the three-dimensional image display with virtual reality. This investigation can be useful to better explore a three-dimensional data structure.