• Title/Summary/Keyword: three-dimensional steel structures

Search Result 230, Processing Time 0.021 seconds

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Behavior of steel-concrete composite cable anchorage system

  • Gou, Hongye;Wang, Wei;Shi, Xiaoyu;Pu, Qianhui;Kang, Rui
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.115-123
    • /
    • 2018
  • Steel-concrete composite structure is widely applied to bridge engineering due to their outstanding mechanical properties and economic benefit. This paper studied a new type of steel-concrete composite anchorage system for a self-anchored suspension bridge and focused on the mechanical behavior and force transferring mechanism. A model with a scale of 1/2.5 was prepared and tested in ten loading cases in the laboratory, and their detailed stress distributions were measured. Meanwhile, a three-dimensional finite element model was established to understand the stress distributions and validated against the experimental measurement data. From the results of this study, a complicated stress distribution of the steel anchorage box with low stress level was observed. In addition, no damage and cracking was observed at the concrete surrounding this steel box. It can be concluded that the composite effect between the concrete surrounding the steel anchorage box and this steel box can be successfully developed. Consequently, the steel-concrete composite anchorage system illustrated an excellent mechanical response and high reliability.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Strength degradation of reinforced concrete piers wrapped with steel plates under local corrosion

  • Gao, Shengbin;Ni, Jie;Zhang, Daxu;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.753-765
    • /
    • 2017
  • This paper aims to investigate the strength degradation of reinforced concrete piers wrapped with steel plates which corrode at the pier base by employing a three dimensional elasto-plastic finite element formulation. The prediction accuracy of the employed finite element analysis method is firstly verified by comparing the analytical results with test results. Then, a series of parametric studies is carried out to investigate the effects of steel plate's corrosion position along width direction, corrosion depth along plate thickness, corrosion range along width direction, and steel plate-concrete bonding degradation on the strength of the piers. It is observed that the strength degradation of the piers is closely related to steel plate's corrosion position, corrosion depth and corrosion range in the case of local corrosion on the webs. In contrast, when the base of flanges corrodes, the strength degradation of the piers is only related to steel plate's corrosion depth and corrosion range, and the influence of corrosion position on the strength degradation is very gentle. Furthermore, the strength of the piers decreases with the degradation of steel plate-concrete bonding behavior. Finally, the maximum strength of the piers obtained from numerical analysis corresponding to different bonding behavior is compared with theoretical results within an accepted error.

Prediction of plastic strength of elliptical steel slit damper by finite element analysis

  • Hossain, Mohammad I.;Amanat, Khan M.
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.249-261
    • /
    • 2022
  • This paper presents a numerical study to develop a guideline for estimating the plastic strength of elliptical steel slit damper with reasonable accuracy. The strut width increases from middle to end in elliptical steel slit damper and it is observed from the past studies that variation of the width is not considered for calculating the plastic strength of the damper. It is also noticed that the existing formulas for predicting plastic strength of this kind of damper may not be accurate and further refinement is warranted. Study is then carried on elliptical steel slit damper made of mild steel and having different geometry to find out equivalency of it with oblong steel slit damper having similar plastic strength. A few three-dimensional finite element models of seismic moment connection system with steel slit damper are developed and validated against past experiments for carrying the present study considering both the material nonlinearity as well as geometric nonlinearity. The results of the parametric studies have been compared with energy quantities and presented graphically to better understand the effects of different parameters on the system. Based on the pattern of parametric study results, closed-form semi-empirical algebraic expression of damper plastic strength is developed for elliptical steel slit damper which shows very good agreement with finite element analysis as well as experiments. This developed expression can now be used for elliptical steel slit damper in replacement with any type of damper in the design of moment connection.

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.

Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets

  • El Damatty, A.A.;Abushagur, M.;Youssef, M.A.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.421-438
    • /
    • 2003
  • Aging and deterioration of existing steel structures necessitate the development of simple and efficient rehabilitation techniques. The current study investigates a methodology to enhance the flexural capacity of steel beams by bonding Glass Fibre Reinforced Plastic (GFRP) sheets to their flanges. A heavy duty adhesive, tested in a previous study is used to bond the steel and the GFRP sheet. In addition to its ease of application, the GFRP sheet provides a protective layer that prevents future corrosion of the steel section. The study reports the results of bending tests conducted on a W-shaped steel beam before and after rehabilitation using GFRP sheets. Enhancement in the moment capacity of the beam due to bonding GFRP sheet is determined from the test results. A closed form analytical model that can predict the yield moment as well as the stresses induced in the adhesive and the GFRP sheets of rehabilitated steel beam is developed. A detailed finite element analysis for the tested specimens is also conducted in this paper. The steel web and flanges as well as the GFRP sheets are simulated using three-dimensional brick elements. The shear and peel stiffness of the adhesive are modeled as equivalent linear spring systems. The analytical and experimental results indicate that a significant enhancement in the ultimate capacity of the steel beam is achieved using the proposed technique. The finite element analysis is employed to describe in detail the profile of stresses and strains that develop in the rehabilitated steel beam.

Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region

  • El-Shihy, A.M.;Fawzy, H.M.;Mustafa, S.A.;El-Zohairy, A.A.
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.281-295
    • /
    • 2010
  • An experimental and a non linear finite element investigation on the behavior of steel-concrete composite beams stiffened in hogging moment region with Carbon Fiber Reinforced Plastics (CFRP) sheets is presented in this paper. A total of five specimens were tested under two-point loads. Three of the composite beams included concrete slab while the other two beams had composite slabs. The stiffening was achieved by attaching CFRP sheets to the concrete surface at the position of negative bending moment. The suggested CFRP sheets arrangement enhanced the overall beam behavior and increased the composite beam capacity. Valuable parametric study was conducted using a three dimensional finite element model using ANSYS program. Both geometrical and material nonlinearity were included. The studied parameters included CFRP sheet arrangement, concrete strength and degree of shear connection.

Investigation on structural behaviour of composite cold-formed steel and reinforced concrete flooring systems

  • Omar A., Shamayleh;Harry, Far
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.895-905
    • /
    • 2022
  • Composite flooring systems consisting of cold-formed steel joists and reinforced concrete slabs offer an efficient, lightweight solution. However, utilisation of composite action to achieve enhanced strength and economical design has been limited. In this study, finite element modelling was utilised to create a three-dimensional model which was then validated against experimental results for a composite flooring system consisting of cold-formed steel joists, reinforced concrete slab and steel bolt shear connectors. This validated numerical model was then utilised to perform parametric studies on the performance of the structural system. The results from the parametric study demonstrate that increased thickness of the concrete slab and increased thickness of the cold formed steel beam resulted in higher moment capacity and stiffness of the composite flooring system. In addition, reducing the spacing of bolts and spacing of the cold formed steel beams both resulted in enhanced load capacity of the composite system. Increasing the concrete grade was also found to increase the moment capacity of the composite flooring system. Overall, the results show that an efficient, lightweight composite flooring system can be achieved and optimised by selecting suitable concrete slab thickness, cold formed beam thickness, bolt spacing, cold formed beam spacing and concrete grade.