• Title/Summary/Keyword: three-dimensional mesh

Search Result 398, Processing Time 0.032 seconds

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

Downward Load Prediction and Reduction Strategy for QTP UAV

  • Park, Youngmin;Choi, Jaehoon;Lee, Hakmin;Kim, Cheolwan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.10-15
    • /
    • 2021
  • The propeller wake of tiltrotor-type aircrafts, such as TR-60 and quad tilt propeller (QTP) UAV, in hover substantially impinges the upper surface of the primary wing and generates a downward load. This load is directly proportional to the thrust of the propeller and reduces the available payload. Therefore, wing and nacelle mechanisms should be carefully designed to reduce downward load. This study conducted a numerical analysis of the rotating propeller in hover to predict the downward load of a QTP UAV. An unsteady three-dimensional Navier-Stokes solver was used along with a sliding mesh for the simulation of the rotating propeller. To reduce the downward load, the tilting mechanisms of the partial wing and nacelle were simultaneously introduced and numerically analyzed. Finally, the downward load was predicted by 14% of isolated propeller thrust; further, the downward load could be reduced by adopting the partial wing and nacelle tilting concept.

A Study on Tricot Textile Design Process using Tricot CAD Program (CAD 프로그램을 활용한 트리코트 텍스타일 디자인 개발 프로세스 연구)

  • Choi, Kyoungme;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.5
    • /
    • pp.1-16
    • /
    • 2015
  • The appearances and geometry structures of knitted fabrics have important effects on their functions as textile fabrics. Structural design of the woven fabric, prior to the manufacturing processes in the weaving mill, often leads to a similar predictable appearance in the final outcome with the corresponding weave design. The increase of the employment of elastic textile yarns in knitting fabrics for comfort stretch or outdoor sports wear knit products has, however, resulted in difficulties in predicting the final appearance of the knit structure design. Due to the stretchability and exceptional recovery behavior of the elastic yarns such as polyurethane elastomeric yarns, the appearance of the final product often differs from the initial knit design. At textile CAD program for preparing tricot knit designs has been employed in this study to predict the two dimensional appearance of the design. The similarities between the designs and corresponding knit products seem to be acceptable for the two-dimensional textile CAD program in this study. However, when elastomeric yarns are partially employed in the polyester filament tricot product, a considerable amount of departure from the design is apparent due to the constriction and/or deformation of property differences in the elastomeric yarns and polyester filament yarns. Therefore, another purpose of this study is to measure the departure of the final tricot product from the initial tricot design, especially in the case employing elastomeric yarns in the knit structure together with regular polyester filament yarns. For measuring the three-dimensional departure, a 3D scanning system has been used for the mesh reconstruction of the fabric specimen. Hopefully, the result from this study will be used as a guide to modify and improve the current textile CAD program proposed for the two-dimensional simulation of the tricot.

Geometry Coding of Three-dimensional Mesh Models Using a Joint Prediction (통합예측을 이용한 삼차원 메쉬의 기하정보 부호화 알고리듬)

  • 안정환;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.185-193
    • /
    • 2003
  • The conventional parallelogram prediction uses only three previously traversed vertices in a single adjacent triangle; thus, the predicted vertex can be located at a biased position. Moreover, vortices on curved surfaces may not be predicted effectively since each parallelogram is assumed to lie on the same plane. In order to improve the prediction performance, we use all the neighboring vertices that precede the current vertex. After we order vortices using a vertex layer traversal algorithm, we estimate the current vertex position based on observations of the previously coded vertex positions in the layer traversal order. The difference between the original and the predicted vertex coordinate values is encoded by a uniform quantizer and an entropy coder. The proposed scheme demonstrates improved coding efficiency for various VRML test data.

An Automatic Data Generation Procedure for Finite Element Structural Analysis of Cargo Holds of a Ship (선체중앙부 유한요소 구조해석을 위한 입력자동화)

  • S.W. Park;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.99-108
    • /
    • 1994
  • As a consequent result of our previous paper, "Development of Automatic Data Generation Program for Finite Element Structural Analysis of Oil Tankers"[1], the objective of this paper is to develop an automatic modeling program for the three-dimensional finite element structural analysis of hull modules of general commercial ships, especially oil tankers, bulk carriers, and container ships. Based on the proposed algorithm in [1], the followings are newly added: general applicability for three ship types, automatic mesh division interface with MSC/NASTRAN, direct wave load calculation interface, and Graphic User Interface technology in the process of input data preparation. The usefulness of this procedure is verified by calculation examples. examples.

  • PDF

Three-dimensional Texture Coordinate Coding Using Texture Image Rearrangement (텍스처 영상 재배열을 이용한 삼차원 텍스처 좌표 부호화)

  • Kim, Sung-Yeol;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.36-45
    • /
    • 2006
  • Three-dimensional (3-D) texture coordinates mean the position information of torture segments that are mapped into polygons in a 3-D mesh model. In order to compress texture coordinates, previous works reused the same linear predictor that had already been employed to code geometry data. However, the previous approaches could not carry out linear prediction efficiently since texture coordinates were discontinuous along a coding order. Especially, discontinuities of texture coordinates became more serious in the 3-D mesh model including a non-atlas texture. In this paper, we propose a new scheme to code 3-D texture coordinates using as a texture image rearrangement. The proposed coding scheme first extracts texture segments from a texture. Then, we rearrange the texture segments consecutively along the coding order, and apply a linear prediction to compress texture coordinates. Since the proposed scheme minimizes discontinuities of texture coordinates, we can improve coding efficiency of texture coordinates. Experiment results show that the proposed scheme outperforms the MPEG-4 3DMC standard in terms of coding efficiency.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE PLATFORM SWITCHING

  • Kim Yang-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.727-735
    • /
    • 2005
  • Statement of problem. Platform switching in implant prosthesis has been used for esthetic and biological purpose. But there are few reports for this concept. Purpose. The purpose of this study is evaluation of platform switching in wide implant by three dimensional finite element analysis. Materials and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for Osstem implant system. Three-dimensional finite element models were developed for (1) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with wide cemented abutment, titanium alloy abutment screw, and prosthesis (2) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with regular cemented abutment, titanium alloy abutment screw and prosthesis(platform switching) was made for finite element analysis. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized to 650N, and round and flat type prostheses were loaded to 200 N. Four loading offset point (0, 2, 4, 6 mm from the center of the implants) were evaluated. Models were processed by the software programs HyperMesh and ANSA. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView were used for post processing. Results. The results from experiment were as follows; 1. von Mises stress value is increased in order of bone, abutment, implant and abutment screw. 2. von Mises stress of abutment screw is lower when platform switching. 3. von Mises stress of implant is lower when platform switching until loading offset 4 mm. 4. von Mises stress of abutment is similar between each other. 5. von Mises stress of bone is slightly higher when platform switching. Conclusion. The von Mises stress pattern of implant components is favor when platform switch ing but slightly higher in bone stress distribution than use of wide abutment. The research about stress distribution is essential for investigation of the cortical bone loss.

Finite Element Analysis for Temperature Distribution Prediction of Steady Rolling Tires with Detailed Tread Pattern (패턴 형상을 고려한 회전하는 타이어의 온도 예측을 위한 유한 요소 해석)

  • Jeong, Kyoung Moon;Kang, Sung Ju;Park, Woo Cheol;Kim, Hyoung Seok;Kim, Kee Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2014
  • The temperature distribution of steady state rolling tires with detailed tread blocks is numerically predicted using the three dimensional full patterned tire model. A three dimensional periodic patterned tire model is constructed by copying 1-sector mesh in the circumferential direction. Using the static tire contact analysis, the strain cycles during one revolution are approximated with the strains at Guassian points of the elements which are sector-wise repeated within the same circular ring of elements, by neglecting the tire rolling effect. Based upon the multi-axial fatigue theory, the maximum principal strain is used to represent the combined effect of six strain components on the hysteretic loss. In the following, the deformation due to the inflation and vertical load is calculated using ABAQUS. Then heat generation rate in each element is calculated using an in-house code. Lastly, temperature distribution is calculated using ABAQUS again. Through the numerical experiments, the validity of the proposed prediction method is examined by comparing with the experiment and the temperature distribution of a patterned tire model is compared with those of the main-grooved simple tire model.

Efficient Three Dimensional Analysis of High-Rise Shear Wall Building with Openings (개구부가 있는 고층 벽식 구조물의 효율적인 3차원 해석)

  • 김현수;남궁계홍;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.351-365
    • /
    • 2002
  • The box system that is composed only of reinforced concrete walls and slabs we adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.