• 제목/요약/키워드: three-dimensional mesh

검색결과 399건 처리시간 0.028초

비선형 비압축성 물질의 해석을 위한 3차원 Smoothed FEM (A Study on 3D Smoothed Finite Element Method for the Analysis of Nonlinear Nearly-incompressible Materials)

  • 이창계;이정재
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.159-169
    • /
    • 2019
  • This work presents the three-dimensional extended strain smoothing approach in the framework of finite element method, so-called smoothed finite element method (S-FEM) for quasi-incompressible hyperelastic materials undergoing the large deformations. The proposed method is known that the incompressible limits, such as over-estimation of stiffness and distorted mesh sensitivity, can be overcome in two dimensions. Therefore, in this paper, the idea of Cell-based, Edge-based and Node-based strain smoothing approaches is extended to three-dimensions. The construction of subcells and smoothing domains for each methods are explained. The smoothed strain-displacement matrix and the stiffness matrix are obtained on each smoothing domain in the same manner with two-dimensional S-FEM. Various numerical tests are studied to demonstrate the validity and accuracy of 3D-S-FEM. The obtained results are compared with analytical solutions to express the efficacy of the methods.

탄성변형으로 인한 틸팅패드 저널베어링의 예압 변화 (Elastic Deformation Induced Preload Change in Tilting Pad Journal Bearing)

  • 이동현;서준호
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.102-110
    • /
    • 2023
  • This study aims to quantify the variation in the performance of a tilting pad journal bearing (TPJB) owing to the elastic deformation of its pad. To this end, we first defined a parameter, "elastic preload", and predicted the changes in the performance of the TPJB, as a function of the preload amount. We used the iso-viscosity Reynolds equation, which ignores the temperature rise due to viscous shear in thin films, and the resultant thermal deformation of the bearing structure. We employed a three-dimensional finite element model to predict the elastic deformation of the bearing pad, and a transient analysis, to converge to a static equilibrium condition of the flexible pads and journal. Conducting a modal coordinate transformation helped us avoid heavy computational issues arising from a mesh refinement in the three-dimensional finite element pad model. Moreover, we adopted the Hertzian contact model to predict the elastic deformation at the pivot location. With the aforementioned overall strategy, we predicted the performance changes owing to the elastic deformation of the pad under varying load conditions. From the results, we observed an increase in the preload due to the pad elastic deformation.

사면체 변요소를 이용한 3차원 정자장 해석 (Three Demensional magnetostatic Analysis Using Tetrahedral Edge Elements)

  • 김동수;이홍배;최경;정현교;한송엽
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.751-756
    • /
    • 1991
  • In this paper, three dimensional magnetostatic fields are analysed using tetrahedral edge elements, magnetic vector potential and modified formulation of weighted residual method. If we define unknown variables in mesh edges, some conditions, such as Coulomb gauge condition in magnetic vector potential are naturally satisfied. So with less memory space, we can obtain more accurate solutions than the method where unknown variables are defined at nodes. Reliability and utility of this method are verified in two examples.

  • PDF

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

밀림곡관 맞대기 용접부의 잔류응력 특성 평가 (Evaluation of Welding Residual Stress Characteristics of a Surge Line Elbow)

  • 한창기;장윤석;김만원;이경수
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.45-52
    • /
    • 2015
  • Even though a lot of efforts have been devoted to evaluate welding residual stress characteristics of nuclear components, from the view point of accuracy, there are still some arguments in application of engineering estimation schemes. In this paper, three-dimensional finite element analyses (FEA) were carried out to predict residual stress distributions in butt welds of a typical surge line piping. Mesh optimization was conducted and subsequent analysis results such as the axial and hoop stress components along the weld center line and inner wall. Moreover, alternative evaluation was conducted by using three representative equations and their results were compared to those of FEA. Thereby, key parameters affecting to temperature profiles and residual stress distributions were derived as well as an optimum engineering estimation scheme was recommended.

터보프롭 항공기의 프로펠러 파워효과 해석 및 보정 (Analysis and Calibration of Propeller Power Effect for Turboprop Aircraft)

  • 박영민;정진덕
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.62-66
    • /
    • 2015
  • During the conceptual design of turboprop aircraft, the power effect driven from rotating propeller is typically obtained from empirical data. In the present paper, propeller power effect was obtained by using unsteady three-dimensional Navier-Stokes solver with $k-{\omega}$ turbulence model for the accurate prediction of turboprop aircraft performance. In order to simulate the relative motion between propeller and fuselage, unsteady sliding mesh method was used. During simulation, three flow conditions such as climb, cruise and descending flight were selected considering the flight envelop of the real turboprop aircraft. For the correction of aerodynamic coefficients, the thrust effect of engine exhaust gas was included based on the engine manufacturer's data. Using the computational results, the correction table for the aerodynamic coefficient of turboprop aircraft was suggested for the performance analysis of turboprop aircraft.

딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화 (Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm)

  • 김동욱
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

티타늄 및 PEEK 지대주 소재가 임플란트 유지 수복물 및 주위 지지골 응력 분포에 미치는 영향: 3차원 유한요소해석 (Effects of titanium and PEEK abutments on implant-supported dental prosthesis and stress distribution of surrounding bones: three-dimensional finite element analysis)

  • 홍민호
    • 대한치과기공학회지
    • /
    • 제44권3호
    • /
    • pp.67-75
    • /
    • 2022
  • Purpose: This study aimed to comparatively evaluate the stress distribution of bones surrounding the implant system to which both titanium and polyetheretherketone (PEEK) abutments are applied using a three-dimensional finite element analysis. Methods: The three-dimensional implant system was designed by the computer-aided design program (CATIA; Dassault Systemes). The discretization process for setting nodes and elements was conducted using the HyperMesh program (Altair), after finishing the design of each structure for the customized abutment implant system. The results of the stress analysis were drawn from the Abaqus program (Dassault Systèmes). This study applied 200 N of vertical load and 100 N of oblique load to the occlusal surface of a mandibular first molar. Results: Under external load application, the PEEK-modeled dental implant showed the highest von Mises stress (VMS). The lowest VMS was observed in the Ti-modeled abutment screws. In all groups, the VMS was observed in the crestal regions or necks of implants. Conclusion: The bones surrounding the implant system to which the PEEK abutment was applied, such as the cortical and trabecular bones, showed stress distribution similar to that of the titanium implant system. This finding suggests that the difference in the abutment materials had no effect on the stress distribution of the bones surrounding implants. However, the PEEK abutments require mechanical and physical properties improved for clinical application, and the clinical application is thought to be limited.

예측 잉여신호 벡터 양자화를 이용한 3차원 메시 모델 부호화 (3-dimensional Mesh Model Coding Using Predictive Residual Vector Quantization)

  • 최진수;이명호;안치득
    • 방송공학회논문지
    • /
    • 제2권2호
    • /
    • pp.136-145
    • /
    • 1997
  • 일반적으로 3차원 메시 모델은 많은 정점(vertex)과 다각형으로 이루어져 있을 뿐만 아니라 정점 위치 각각은 3차원 좌표에서 세 개의 32비트 부동소수점수로 표현되기 때문에, 모델을 표현하기 위해 필요한 데이터 량은 매우 많다. 따라서 3차원 모델을 효과적으로 저장 및 전송하기 위한 압축 기법은 필수적으로 요구된다. 이를 위해 본 논문에서는 예측 잉여신호 벡터 양자화를 이용한 3차원 모델 압축 기법을 제안한다. 기본적인 개념은 3D 모델을 이루는 서로 인접한 정점 위치들간에 존재하는 높은 상관도와 정점 위치 자체가 지니는 벡터 특성에 근거한다. 실험 결과에 따르면 제안한 방법이 기존의 압축 방법에 비해 높은 압축율을 얻을 수 있으며 정점 위치 정보를 점진적으로 전송할 수 있는 장점을 지닌다.

  • PDF