• Title/Summary/Keyword: three-dimensional mesh

Search Result 399, Processing Time 0.019 seconds

Three Dimensional Adaptive Mesh Generator for Thermal Oxidation Simulation (열산화 공정 시뮬레이션을 위한 3차원 적응 메쉬 생성기 제작에 관한 연구)

  • 윤상호;이제희;윤광섭;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.48-51
    • /
    • 1995
  • We have developed the three dimensional mesh generator for three dimensional process simulation using the FEM(Finite Element Method). Tetrahedron element construct the presented three dimensional mesh, which is suitable for the simulation of three dimensional behavior of the LOCOS. The simulation of thermal oxidation is one of the problem in scale downed semiconductor processes. As three dimensional simulators use the huge size of the memory, we use the efficient method that generates the new nodes inside the growing oxide and removes the nodes nearby the SiO2/Si interface in silicon. The resented three dimensional mesh generator was designed to be used in various process simulations, for instance thermal oxidation, silicidation, nitridation, ion implantation, diffusion, and so on.

  • PDF

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

  • Otomo, Ikuru;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahedralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

Adaptive mesh generation by bubble packing method

  • Kim, Jeong-Hun;Kim, Hyun-Gyu;Lee, Byung-Chai;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.135-149
    • /
    • 2003
  • The bubble packing method is implemented for adaptive mesh generation in two and three dimensions. Bubbles on the boundary of a three-dimensional domain are controlled independently of the interior bubbles in the domain, and a modified octree technique is employed to place initial bubbles in the three-dimensional zone. Numerical comparisons are made with other mesh generation techniques to demonstrate the effectiveness of the present bubble packing scheme for two- and three-dimensional domains. It is shown that this bubble packing method provides a high quality of mesh and affordable control of mesh density as well.

Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing

  • Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of tree-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Development of a Three Dimensional Mesh Generation Program for CFD Simulations (CFD 해석을 위한 3차원 격자생성 프로그램의 개발)

  • Chang J.;Kim S.-R.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157-163
    • /
    • 2001
  • In the present study a mesh generation program is developed for three dimensional flow analyses with complex geometry. By the present program one can define vertices using various coordinate systems and cells for finite volume approach. Rendered display of the generated mesh can be also available in both orthographic and perspective projection modes. Through perspective projection mode, one can check the quality of generated mesh by moving around inside the mesh like a virtual reality. The examples of the program execution is given in the paper.

  • PDF

Automatic Mesh Generation in the General Three-Dimensional Trimmed Surface using Qua (쿼드트리를 이용한 일반적인 3차원 트림곡면에서의 유한요소 자동생성)

  • 유동진;윤정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.136-148
    • /
    • 2000
  • In this work, a general method for the mathematical description of three-dimensional trimmed surface is proposed by introducing the base parametric surface and boundary curves. Since mesh density distribution for the analysis may vary by cases, a grid-based mesh generation algorithm using quadtree is proposed in the present work. For the assurance of connectivity of generated meshes among surfaces, a method for the pre-cleaning of boundary curves has been developed to be used in the automatic generation of the finite elements. In addition, mesh-smoothing algorithm is suggested which can be used in the general trimmed surface. In this algorithm nodes are moved on the original surface by the normal projection in each iterative smoothing procedure.

  • PDF

Hexahedral Mesh Generation by Sweeping and Grafting Algorithm (스위핑과 접목 알고리즘은 이용한 육면체 요소망의 생성)

  • 권기연;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.125-132
    • /
    • 2001
  • An algorithm for generating all hexahedral meshes for three dimensional objects has been presented. This algorithm is based on the sweeping and the grafting method. In sweeping process internal nodes generating method has been modified by employing the distances between nodes on connecting surfaces and on source surfaces. In addition to the sweeping processes grafting algorithm is also modified to obtain more effective meshes by refining elements near grafting surfaces. With this method two and a half dimensional hexahedral meshes for three dimensional objects can be generated effectively. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

  • PDF