• Title/Summary/Keyword: three-dimensional equivalent magnetic network method

Search Result 9, Processing Time 0.025 seconds

Characteristic Analysis using Equivalent Magnetic Circuit Network Method for Permanent Magnet Excited Transverse Flux Linear Motor with Spiral Core in a Mover (스파이럴 이동자 코어를 가지는 영구자석여자 횡자속 선형전동기의 등가자기회로망법을 이용한 특성해석)

  • Lee, Ji-Young;Kim, Ji-Won;Woo, Byung-Chul;Kang, Do-Hyun;Hoang, Trung Kien;Kim, Kwang-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.794_795
    • /
    • 2009
  • This paper presents an analysis method for a permanent magnet excited Transverse Flux Linear Motor (TFLM) with spiral core in a mover. The spiral core is used as mover core in order to make 3-dimensional magnetic flux path at the TFLM which has 3-dimensional magnetic flux flow. Magnetic field is analyzed by three-dimensional Equivalent Magnetic Circuit Network (EMCN) method. And an imaginary part, 'flux barrier,' is introduced to consider the spiral core characteristic. The computed thrust forces is compared to the measured results to show the effect of presented analysis method.

  • PDF

Analysis and Optimal Design of Optical Pickup Actuator by 3D-EMCN Method (3D-EMCN법을 이용한 광 픽업 액츄에이터의 해석 및 최적설계)

  • Kim, Jin-A;Jeon, Tae-Gyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.234-241
    • /
    • 2002
  • An optical pickup actuator is an objective-lens-moving mechanism that provides a means to follow the disk displacement accurately(1). In this paper, a slim type optical pickup actuator for Notebook PCs is analyzed and designed to improve the driving sensitivity A three dimensional equivalent magnetic circuit network method (3D-EMCN method) is proposed for an analysis method which provides better characteristics in both precision and computation time of analysis comparing with a commercial three-dimensional finite element (3D-FEM) codes. To verify the validity of proposed method, we made a comparison between the analysis results and the experimental ones. We also compared this analysis results with 3D-FEM results. Among the several optimal algorithm, we adopt a niching genetic algorithm, which renders a set of the multiple optimal solutions. RCS (Restricted Competition Selection) niching genetic algorithm is used for optimal design of the actuator's performance. Recently, the pickup actuator needs additional driving structure for radial and tangential tilting motion to obtain better pick-up performance. So we applied the proposed method to the model containing tilting coils.

Design of a Transverse Flux Linear Motor

  • Chang, Jung-Hwan;Kim, Ji-Won;Kang, Do-Hyun
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • This paper presents design procedures of a transverse flux linear motor (TFLM). The minimum and maximum flux linkage was determined by the simplified equivalent magnetic circuit and estimated average magnetic flux density at the air gap region by considering the shape of applied magnetomotive force (MMF). With this information, the number of turns of each phase winding was calculated based on the amplitude of applied voltage and speed of a mover. The rated current, coil diameter, and winding area were obtained with the aid of an empirical formula for determining the required MMF. The usefulness of the proposed design method for TFLM is verified by the three-dimensional equivalent magnetic circuit network (EMCN) method and the experimental results of prototyped machine.

Analysis of Cogging Torque in BLDC Motor Taking into account Magnetization Distribution Using 3DEMCN (3차원 등가자기회로망법을 이용한 영구자석의 자화분포에 따른 BLDC 모터의 코깅 토오크 해석)

  • Hwang, D.Y.;Hur, J.;Yoon, S.B.;Hong, J.P.;Hyun, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.159-161
    • /
    • 1997
  • This paper presents a method of reducing cogging torque and improving average torque by changing the dead zone angle of trapezoidal magnetization distribution of rotor magnet in ring type. Because brushless d.c. motor has 3D shape of overhang, 3D analysis should be used for computation of its magnet field. In this paper, Three Dimensional Equivalent Magnetic Circuit Network method (3DEMCN) which can calculate an accurate 3D magnetic field has been introduced. The method has an advantage that nonlinear magnetic phenomena can be considered and the cogging torque analyses requesting the rotation of the rotor can be performed by the variation of magnetization distribution without remesh.

  • PDF

The Characteristic Analysis of an Automotive Starter Motor with Pole Core (보조극형 자동차 시동용 직류전동기의 특성해석)

  • Bae, Joon-Young;Kim, Jin-Goo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2605-2614
    • /
    • 2002
  • This paper describes an analysis method based on the experimental parameter for the 0.9kW starter motor of vehicle with permanent magnet and pole core, and analyzed the influence by the effect of pole core of starting motor by using the 2D-FEM analysis technique to reflect the structural characteristic of 3D. A starter motor consists mainly of armature, yoke and permanent magnet with the pole core. Additionally, there is different the axial length of each part. Therefore, the effective of analysis method is needed to improve the characteristic of it. This paper approached the 2D-FEM analysis estimated by the 3D-EMCN(Three Dimensional Equivalent Magnetic Circuit Network) instead of the 3D-FEM analysis to minimize parameters. As a result, this paper is proposed the validity of 2D-FEM analysis and obtained reasonable results for improving a performance.

Transverse Flux Linear Machine with High Thrust for Direct Drive Applications

  • Chang, Jung-Hwan;Kim, Ji-Won;Kang, Do-Hyun;Bang, Deok-Je
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.64-69
    • /
    • 2010
  • This paper describes the development of a novel transverse flux linear motor (TFLM) excited by permanent magnets (PMs). It combines the advantage of two different TFLMs and produces high thrust with reduced normal force. The magnetic field is analyzed by combining the three-dimensional (3D) equivalent magnetic circuit network (EMCN) method with 2D finite element analysis. The experimental findings of the prototype motors are in good agreements with the analysis results, and demonstrate the potential of the proposed motor as a direct drive requiring relatively long displacement of a mover.

Calculation of Inductances in Permanent Magnet Type Transverse Flux Linear Motor (영구자석형 횡자속 선형전동기의 인덕턴스 산정에 관한 연구)

  • Lee, Ji-Young;Ryu, Ho-Gil;Hong, Jung-Pyo;Jung, Soo-Jin;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.948-951
    • /
    • 2003
  • The design and analysis of electrical machines often require analytical models for performance assessment and system simulation. Inductances are important parameters of these models. In this paper, the methods of calculating apparent and incremental inductances are introduced for a transverse flux linear motor, which has a peculiar coil shape. The computation is accomplished by nonlinear three dimensional finite element method(FEM) and equivalent magnetic circuit network(EMCN). The improved method has been verified by a test result.

  • PDF

A Parasitic Elements Extraction of MIM Capacitor Using Short-Open Calibration Method (단락 개방 Calibration 방법을 이용한 MIM 커패시터의 기생 소자 값 추출)

  • Kim, Yu-Seon;Nam, Hun;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.114-120
    • /
    • 2008
  • In this paper, we extract the parasitic elements of the metal-insulate-metal(MIM) capacitor using short-open calibration (SOC). The scattering matrixes of short, open, and MIM structures in strip lines are measured by full electro-magnetic (EM) simulator and vector network analyser. The full EM simulations are performed by finite element method (FEM) that was fitted three dimensional structure analysis. The electro-magnetic effects of MIM capacitor laminated in the multi-layered structures are proposed the II equivalent circuit with lumped elements, and the relations between the measured scattering parameters of the MIM structures and lumped elements in the circuits are shown by performing 2 port network analysis. The extracted lumped elements using the proposed SOC method are independent to frequencies.

Dynamic Characteristic Analysis of Linear DC Motor by 3D EMCN Considering Input Voltage (구동 전압을 고려한 3차원 등가자기회로방법에 의한 선형 직류전동기의 동특성 해석)

  • Ha, Kyung-Ho;Yeom, Sang-Bu;Hong, Jung-Pyo;Hur, Jin;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • In order to design the Linear DC Motor (LDM) with improved characteristics, transient and steady state analysis are required. furthermore, 3D analysis is also needed to analyze the precise characteristics like thrust, time harmonics. This paper deals with the transient and dynamic characteristic analysis of LDM by coupling of external circuit and motion equation using 3D Equivalent Magnetic Circuit Network Method (EMCN). For the three dimensional analysis of electric machine, EMCN is very effective method that ensures high accuracy similar to FEM and short computation time. Also, The modeling by EMCN easily allows the mover to move with respect to the stater at each time step, and the spatial moving step is determined by the solution of the mechanical motion equation and the computed electromagnetic thrust The results are compared with experimental ones to clarify the usefulness and verify the accuracy of the Proposed method.