• 제목/요약/키워드: three soil phase

검색결과 124건 처리시간 0.022초

Changes in Physical Properties Especially, Three Phases, Bulk Density, Porosity and Correlations under No-tillage Clay Loam Soil with Ridge Cultivation of Rain Proof Plastic House

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Sun-Kook;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyung-Ju;Han, Yeon Soo;Jung, Woo-Jin
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.225-234
    • /
    • 2014
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique including recycling of the ridge and the furrow of a field for following crops in Korea. No-tillage systems affect soil physical properties such as three phase (solid, liquid, and air phase) and distribution of soil granular. Solid ratio of subsoil in 3-year of no-tillage (NT) treatment was remarkably lower than that in conventional (CT, 2-year of no-tillage + 1-year of tillage) treatment, while air ratio of subsoil in NT remarkably increased. Bulk density of subsoil in NT remarkably decreased. Porosity of subsoil in NT remarkably increased. Deviation of air phase, bulk density, and porosity of top soil and subsoil in NT remarkably decreased in NT compared with CT. Solid phase ratio and liquid phase ratio in NT and CT had positive (+) correlation. Solid phase ratio and air phase ratio in NT and CT had negative (-) correlation, also liquid phase ratio and air ratio had negative (-) correlation. Bulk density and liquid ratio in soil had positive (+) correlation at top soil and subsoil in NT. Bulk density and air ratio in soil had negative (-) correlation in NT and CT. Porosity and liquid phase ratio had negative (-) correlation, r =1), the significant value was lower in NT than in CT. Porosity and air phase ratio had positive (+) correlation (r =1).

이액상 시스템에서 토양으로부터 비수용성 액체로의 PAHs의 이동특성

  • 양지원;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.247-249
    • /
    • 2002
  • The transfer behaviors of three Polyarmatic hydrocarbons (PAHs) from soil to non-aqueous phase liquid (NAPL) were investigated. The three different PAHs were phenanthrene, anthracene, and pyrene. The used NAPLs were silicone oil and paraffine oil. The percentage of the remained PAHs into soil were similar without the relation to kinds of NAPLs. And the transfer of PAHs into NAPLs was fastened until 1 day as the increase of mixing rate but in the case of 450 rpm, the remained PAHs into soil was increased after 1 day because NAPLs was emulsified.

  • PDF

두둑을 재활용한 한국형 무경운 농업 II. 시설 무경운 토양의 물리적 특성 : 입단과 용적밀도 및 삼상변화 (No-Tillage Agriculture of Korean-Style on Recycled Ridge II. Changes in Physical Properties : Water-Stable Aggregate, Bulk density, and Three Phase Ratio to Retain Water at Plastic Film Greenhouse Soil in No-Tillage System)

  • 양승구;신길호;김선국;김희권;김현우;정우진
    • 한국유기농업학회지
    • /
    • 제24권4호
    • /
    • pp.719-733
    • /
    • 2016
  • 본 논문은 앞그루작물 재배 시 형성된 이랑을 재활용하여 다음 뒷그루작물을 무경운으로 재배할 경우 토양의 이화학성과 생육 및 수량에 미치는 영향을 구명하고자 추진한 연구 결과의 일부이다. 토양에서 경운 후 시간의 경과에 따른 토양 입자 크기의 분포를 조사한 결과 관행경운과 무경운 토양 입자는 공히 입상구조(granular structure)를 이루고 있었다. 무경운 토양의 입자 크기 2 mm 이상의 분포는 무경운 토양이 경운 토양에 비하여 표토와 심토 공히 증가 되었다. 그리고 내수성입단 0.25 mm 이상 0.5 mm 이하와 0.5 mm 이상 1 mm 이하, 1 mm 이상의 대입단 분포는 경운과 무경운 1년차 토양에서 유의적인 차이가 없었으나, 무경운 2년차에서는 입단의 크기별로 각각 8.2%, 4.5%, 1.7%로 경운과 무경운 1년차에 비하여 유의적인 증가를 보였다. 관행 경운 토양 표토의 용적밀도 $1.10MG\;m^3$이 무경운 1년차에서 $1.30MG\;m^3$으로 증가 되었으나, 무경운 2년차는 $1.14MG\;m^3$, 무경운 3년차는 $1.03MG\;m^3$으로 용적밀도가 감소되었으며, 심토도 같은 경향이었다. 따라서 용적밀도와 정(+)의 상관이 있는 고상율은 표토와 심토 공히 무경운 1년차에서 관행 경운 토양에 비하여 증가되었으나, 무경운 2년차와 3년차는 감소되었다. 용적밀도 및 고상율과 부(-)의 상관관계가 있는 공극율은 경운 토양 58.5%가 무경운 1년차는 51%로 8.5% 감소되었으나, 무경운 2년차는 56.9%, 무경운 3년차는 61.2%로 증가되었으며, 심토도 같은 경향이었다. 공극율과 정(+)의 상관관계가 있는 기상율은 관행경운 토양에 비하여 무경운 1년차는 감소되었으나, 무경운 2년차와 3년차에서는 증가되었다. 그리고 기상과 함께 공극율을 결정하는 액상율은 경운 표토 24.2%가 무경운 1년차는 28.3%로 증가되었으나, 무경운 2년차는 23.4%, 무경운 3년차는 18.3%로 현저하게 감소되었으며, 심토도 같은 경향이었으나, 심토의 액상율은 표토에 비하여 증가되었다.

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • 제13권1호
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.

저관리 옥상녹화 모듈에서 토심, 배합비의 차이가 토양의 특성 및 흰줄무늬사사의 생육에 미치는 영향 (Effect on the Growth of Pllioblastus pygmaed and Soil Characteristics as Affected by Difference of Soil Thickness and Soil Mixture Ratio in the Shallow-Extensive Green Roof Module System)

  • 박지혜;주진희;윤용한
    • 한국환경과학회지
    • /
    • 제19권7호
    • /
    • pp.871-877
    • /
    • 2010
  • The objectives of this study were to compare growth of Pllioblastus pygmaed and soil characteristics as affected by difference of soil thickness and mixture ratio in shallow-extensive green roof module system, and to identify the level of soil thickness and mixture as suitable growing condition to achieve the desired plants in green roof. Different soil thickness levels were achieved under 15cm and 25cm of shallow-extensive green roof module system that was made by woody materials for $500{\times}500{\times}300mm$. Soil mixture ratio were three types for perlit: peatmoss: leafmold=6:2:2(v/v/v, $P_6P_2L_2$), perlit: peatmoss: leafmold=5:3:2(v/v/v, $P_5P_3L_2$) and perlit: peatmoss: leafmold=4:4:2(v/v/v, $P_4P_4L_2$). On June 2006, Pllioblastus pygmaed were planted directly in a green roof module system in rows. All treatment were arranged in a randomized complete block design with three replication. The results are summarized below. In term of soil characteristics, Soil acidity and electric conductivity was measured in pH 6.0~6.6 and 0.12dS/m~0.19dS/m, respectively. Organic matter and exchangeable cations desorption fell in the order: $P_4P_4L_2$ > $P_5P_3L_2$ > $P_6P_2L_2$. $P_6P_2L_2$ had higher levels of the total solid phase and liquid phase, and $P_4P_4L_2$ had gas phase for three phases of soil in the 15cm and 25cm soil thickness. Although Pllioblastus pygmaed was possibled soil thickness 15cm, there was a trend towards increased soil thickness with increased leaf length, number of leaves and chlorophyll contents in 25cm. The growth response of Pllioblastus pygmaed had fine and sustain condition in order to $P_6P_2L_2$ = $P_5P_3L_2$ > $P_4P_4L_2$. However, The results of this study suggested that plants grown under $P_4P_4L_2$ appear a higher density ground covering than plants grown under $P_6P_2L_2$. Collectively, our data emphasize that soil thickness for growth of Pllioblastus pygmaed were greater than soil mixture ratio in shallow-extensive green roof module system.

Level I Fugacity Model을 이용한 Biopile 내 유기화합물 5종의 분포 예측 (Prediction of Distribution for Five Organic Contaminants in Biopiles by Level I Fugacity Model)

  • 김계훈;김호진
    • 한국토양비료학회지
    • /
    • 제41권3호
    • /
    • pp.228-234
    • /
    • 2008
  • 본 연구는 level I fugacity model을 이용하여 유류오염 토양에서 많이 존재하며 생태적 위해성이 큰 다섯가지 유기성오염물질 (anthracene, benzene, benzo[a]pyrene, 1-methylphenanthrene, phenanthrene) 이 기상, 액상, 고상 및 비수용성액체(NAPL)의 네 가지 상(phase)으로 구성된 biopile 내에서 어떻게 분포 하는가를 예측하기 위하여 수행하였다. 이를 위하여 영국 내에서 장기간 유류로 오염된 세 지역으로부터 토양 시료를 채취, 분석하였고 토양 분석 결과와 관련 인자를 level I fugacity model에 입력하여 fugacity 및 오염물질의 토양 중 분포를 구하였다. 다섯 오염물질의 fugacity 간에는 큰 차이가 있었으나 동일 오염물 질은 시료 간 fugacity에서 별다른 차이를 보이지 않았다. 모든 오염물질은 NAPL과 고상에 주로 존재하였으며 토양시료간의 유기탄소함량 차이가 오염물질 의 분배 동태에 큰 영향을 미쳤다. benzene은 기상과 액상에 높은 농도로 존재함으로써 위해성에 근거한 기상과 액상 중 benzene 관리의 중요성을 나타내었다. 반면 다른 오염물질은 기상과 액상에 거의 존재하지않음을 보임으로써 지하수 오염 가능성을 현저하게 감소시켰다. 본 연구의 결과는 위해성이 큰 오염물질과 복원 처리를 토양 내 오염물질 잔류 농도 간에 관련이있음을 보였으며 또한 유류오염 토양의 위해성 평가과정에서 NAPL과 고상을 고려하는 일의 중요성도 나타내었다.

Comparative study of calcium carbonate deposition induced by microorganisms and plant ureases in fortified peat soils

  • Chao Wang;Jianbin Xie;Yinlei Sun;Jianjun Li;Jie Li;Ronggu Jia
    • Structural Monitoring and Maintenance
    • /
    • 제11권3호
    • /
    • pp.187-202
    • /
    • 2024
  • For the problems of high compressibility and low strength of peat soil formed by lake-phase deposition in Dianchi Lake, microbial-induced calcium carbonate deposition (MICP), phyto-urease-induced calcium carbonate deposition (EICP) and phyto-urease-induced calcium carbonate deposition combined with lignin (EICP combined with lignin) were used to reinforce the peat soil, the changes in mechanical properties of the soil before and after the reinforcement of the peat soil were experimentally investigated, and the effect and mechanism of peat soil reinforcing by the three reinforcing techniques were tested and analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that: compared to the unreinforced remolded peat soil specimens, the unconfined compressive strength (UCS), cohesion and internal friction angle of the specimens reinforced by MICP, EICP and EICP combined with lignin techniques have been greatly improved, and the permeability resistance has been improved by two, two and three orders of magnitude, respectively; the different methods of reinforcing generate different calcium carbonate crystalline phases, with the EICP combined with lignin technique generating the most stable calcite, and the MICP and EICP techniques generating a mixed phase of calcite and spherulitic chalcocite. Analyses showed that for peat soil reinforcement, the acidic environment of peat soil inhibited the growth and reproduction of bacteria, EICP technology was superior to MICP technology, and the addition of lignin solved the defect of the EICP technology that did not have a "nucleation site", so EICP combined with lignin reinforcement was preferred for the improvement of peat soil.

다공성 매질내의 공기압 확산에 대한 실내 배수시험과 유한요소해석 비교분석 (Comparison between Soil Drainage Experiment and Finite Element Analysis for Air Diffusion in Multiphase Porous Media)

  • 김유성;김재홍;김태헌;이진광
    • 한국지반공학회논문집
    • /
    • 제30권2호
    • /
    • pp.77-85
    • /
    • 2014
  • 3상으로 이루어진 다공성 매질 내에서 공기의 흐름을 확인하기 위해 실내시험과 수치해석 알고리즘의 비교분석을 하였다. 불포화 지반내의 유체의 흐름을 확인하는 연구는 이산화탄소 지중저장을 위한 안정성 예측을 위해 중요한 기초연구이다. 일반적으로 대기압에 노출되어 있는 지반공학적인 문제들은 3상 다공성 매질 내부에서 발생할 수 있는 공기압을 '0'으로 가정하고 해석하지만, 지중 1km 지점에서의 불포화토의 거동은 기체압력을 고려하여 지반의 변형과 연계해석이 필수적이다. 본 연구는 이러한 지중 깊숙한 곳에서 발생할 수 있는 불포화 지반의 거동을 해석하고자 공기압의 확산과 소산에 대한 수치해석과 실내배수시험을 비교분석하여 유한요소해석 알고리즘을 검증하고자 한다.

불포화 토양내 유류성분의 포화도 평가를 위한 분배추적자의 활용 방안

  • 박기호;박민호;신항식;고석오
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.20-28
    • /
    • 2006
  • Partitioning tracer tests were conducted to quantify the saturation degree of diesel and water in unsaturated soil, respectively. The use of partitioning tracers that partition into diesel, water, and air (i.e., three-phase partitioning), is in attractive alternative to traditional coring and analysis method. These gaseous partition tracers not global warming gas like CFC's are Butane, Acetylene, Ethylene, Methylene chloride, and Methane. The glass column packed with sandy soil was prepared, in which a three-phase system of air, water, and diesel was maintained. Conservative and partition gas tracers were injected into the columns and detected easily using a single GC detector(FID). For each tracer, a method of moments was used to estimate partition coefficient between water, diesel. and the air, respectively. The results from the column studies showed that the diesel/air tracer partition coefficient ranged from 8.2 to 868 and 9.2 for water/air. Saturation degree of diesel and water in the column, predicted by the partition coefficients obtained from tests, was underestimated up to 66% and 23% respectively.

  • PDF