• Title/Summary/Keyword: three parameter kappa distribution

Search Result 5, Processing Time 0.017 seconds

LH-Moments of Some Distributions Useful in Hydrology

  • Murshed, Md. Sharwar;Park, Byung-Jun;Jeong, Bo-Yoon;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.647-658
    • /
    • 2009
  • It is already known from the previous study that flood seems to have heavier tail. Therefore, to make prediction of future extreme label, some agreement of tail behavior of extreme data is highly required. The LH-moments estimation method, the generalized form of L-moments is an useful method of characterizing the upper part of the distribution. LH-moments are based on linear combination of higher order statistics. In this study, we have formulated LH-moments of five distributions useful in hydrology such as, two types of three parameter kappa distributions, beta-${\kappa}$ distribution, beta-p distribution and a generalized Gumbel distribution. Using LH-moments reduces the undue influences that small sample may have on the estimation of large return period events.

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Jeong, Bo-Yoon;Park, Jeong-Soo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.163-169
    • /
    • 2006
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. The method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, ike dimensional nonlinear equations are simplied to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, the L-ME is recommended to use for small sample size $(n\leq100)$ while MLE is good for large sample size.

  • PDF

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Park Jeong-Soo;Hwang Young-A
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.285-294
    • /
    • 2005
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. Method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, three dimensional nonlinear equations are simplified to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, L-ME (or MME) is recommended to use for small sample size( n$\le$100) while MLE is good for large sample size.

A Comparative Study on the Chemicostructural Characteristics of Ecdysteroids (Ecdysteroid 화합물들의 화학구조 특성에 대한 비교연구)

  • Hwang, Gab-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.4
    • /
    • pp.351-359
    • /
    • 2012
  • Objectives: This study was conducted in order to investigate the specific correlation between physicochemical properties and bioactivity in ecdysteroids found in living organisms. Methods: The examined steroidal compounds were classified into three groups according to their relevance to ecdysone activity. Each compound molecule was completely drawn to automatically calculate its physicochemical parameters and docked against 20-hydroxyecdysone to calculate the total distance. Electronic charge distribution was also observed for each molecule. All procedures were conducted using a computational chemistry program. Results: Ecdysone agonists showed different ranges of parameter values, such as log P, hydrophilic-lipophilic balance (HLB), solubility parameter (SP), hydrophilic surface (HPS), hydrogen bond (HB) and Kappa 2, when compared with antagonists and steroids without ecdysone activity. They also showed a similar electronic charge distribution that is significantly different from the electron charge distribution of antagonists and steroids without ecdysone activity. The total distance values of agonists, estimated by docking them with 20-hydroxyecdysone, were relatively small but showed no correlation with binding affinity with receptor ligand. Conclusions: These results suggest that physicochemical properties such as steric and electronic effects, hydrophobicity and hydrogen bonding may operate in combination to determine the binding activity of ecdysteroids to the receptor protein.

Use of beta-P distribution for modeling hydrologic events

  • Murshed, Md. Sharwar;Seo, Yun Am;Park, Jeong-Soo;Lee, Youngsaeng
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.15-27
    • /
    • 2018
  • Parametric method of flood frequency analysis involves fitting of a probability distribution to observed flood data. When record length at a given site is relatively shorter and hard to apply the asymptotic theory, an alternative distribution to the generalized extreme value (GEV) distribution is often used. In this study, we consider the beta-P distribution (BPD) as an alternative to the GEV and other well-known distributions for modeling extreme events of small or moderate samples as well as highly skewed or heavy tailed data. The L-moments ratio diagram shows that special cases of the BPD include the generalized logistic, three-parameter log-normal, and GEV distributions. To estimate the parameters in the distribution, the method of moments, L-moments, and maximum likelihood estimation methods are considered. A Monte-Carlo study is then conducted to compare these three estimation methods. Our result suggests that the L-moments estimator works better than the other estimators for this model of small or moderate samples. Two applications to the annual maximum stream flow of Colorado and the rainfall data from cloud seeding experiments in Southern Florida are reported to show the usefulness of the BPD for modeling hydrologic events. In these examples, BPD turns out to work better than $beta-{\kappa}$, Gumbel, and GEV distributions.