• Title/Summary/Keyword: three dimensional vision

Search Result 221, Processing Time 0.026 seconds

Polaroid Film Defect Detection Using 2D - Continuous Wavelet Transform (2차원 연속 웨이블릿을 이용한 편광 필름 결함 검출)

  • Jung, Chang-Do;Kim, Se-Yun;Joo, Young-Bok;Yun, Byoung-Ju;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.743-748
    • /
    • 2009
  • In this paper, we propose an effective method to extract background components in automated vision inspection system for polarized film used in TFT LCD display panels. The test image signals are typically composed of three components such as ununiform background, random noises and target defect signals. It is important to analyze the background signal for accurate extraction of defect components. Two dimensional continuous wavelets with first derivative gaussian is used. This methods can be applied for reliable extraction of defect signal by elimination of the background signal from the original image. The proposed method outperforms over conventional FFT methods.

Control of an Underwater Stereo Camera Embedded in a Single Canister Capable of Measuring Distance (거리측정이 가능한 단동형 수중 스테레오 카메라의 제어)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.79-84
    • /
    • 2001
  • This paper present the control of the image disparity of a parallel stereo camera and its application to an underwater stereo camera to enhance the working efficiency of underwater vehicles that are equiped with manipulators in seabed operation. The stereo camera consists of two parallel lenses mounted on a lateral moving base and two CCD cameras mounted on a longitudinal moving base, which is embedded in a small pressure canister for underwater application. Because the lateral shift is related to the backward shift with a nonlinear relation, only one control input is needed to control the vergence and focus of the camera with a special driving device. We can get clear stereo vision with the camera for all the range of objects in air and in water, especially in short range object. The control system of the camera is so simple that we are able to realize a small stereo camera system and apply it to a stereo vision system for underwater vehicles. This paper also shows how to acquire the distance information of an underwater object with this stereo camera. Whenever we focus on an underwater object with the camera, we can obtain three-dimensional images and distance information in real-time.

  • PDF

Face Pose Estimation using Stereo Image (스테레오 영상을 이용한 얼굴 포즈 추정)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.151-159
    • /
    • 2006
  • In this paper. we Present an estimation method of a face pose by using two camera images. First, it finds corresponding facial feature points of eyebrow, eye and lip from two images After that, it computes three dimensional location of the facial feature points by using the triangulation method of stereo vision techniques. Next. it makes a triangle by using the extracted facial feature points and computes the surface normal vector of the triangle. The surface normal of the triangle represents the direction of the face. We applied the computed face pose to display a 3D face model. The experimental results show that the proposed method extracts correct face pose.

  • PDF

A Monocular Vision Based Technique for Estimating Direction of 3D Parallel Lines and Its Application to Measurement of Pallets (모노 비전 기반 3차원 평행직선의 방향 추정 기법 및 파렛트 측정 응용)

  • Kim, Minhwan;Byun, Sungmin;Kim, Jin
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1254-1262
    • /
    • 2018
  • Many parallel lines may be shown in our real life and they are useful for analyzing structure of objects or buildings. In this paper, a vision based technique for estimating three-dimensional direction of parallel lines is suggested, which uses a calibrated camera and is applicable to an image being captured from the camera. Correctness of the technique is theoretically described and discussed in this paper. The technique is well applicable to measurement of orientation of a pallet in a warehouse, because a pair of parallel lines is well detected in the front plane of the pallet. Thereby the technique enables a forklift with a well-calibrated camera to engage the pallet automatically. Such a forklift in a warehouse can engage a pallet on a storing rack as well as one on the ground. Usefulness of the suggested technique for other applications is also discussed. We conducted an experiment of measuring a real commercial pallet with various orientation and distance and found for the technique to work correctly and accurately.

Vision-based Real-Time Two-dimensional Bar Code Detection System at Long Range (비전 기반 실시간 원거리 2차원 바코드 검출 시스템)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose a real-time two-dimensional bar code detection system even at long range using a vision technique. We first perform short-range detection, and then long-range detection if the short-range detection is not successful. First, edge map generation, image binarization, and connect component labeling (CCL) are performed in order to select a region of interest (ROI). After interpolating the selected ROI using bilinear interpolation, a location symbol pattern is detected as the same as for short-range detection. Finally, the symbol pattern is arranged by applying inverse perspective transformation to localize bar codes. Experimental results demonstrate that the proposed system successfully detects bar codes at two or three times longer distance than existing ones even at indoor environment.

Three Dimensional Tracking of Road Signs based on Stereo Vision Technique (스테레오 비전 기술을 이용한 도로 표지판의 3차원 추적)

  • Choi, Chang-Won;Choi, Sung-In;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1259-1266
    • /
    • 2014
  • Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.

Development of Intergrated Vision System for Unmanned-Crane Automation System (무인 크레인 자동화 시스템 구축을 위한 통합 비전 시스템 개발)

  • Lee, Ji-Hyun;Kim, Mu-Hyun;Park, Mu-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.259-263
    • /
    • 2010
  • This paper introduces an integrated vision system that enables us to detect the image of Slabs and Coils and get the complete three dimensional location data without any other obstacles in the field of unmanned-crane automation system. Existing researches with laser scanner tend to be easily influenced by environment in the work place so they cannot give the exact location information. Also, CCD camera has some problems recognize the pattern because of intensity of illumination caused in the industrial setting. To overcome these two weaknesses, this thesis suggests laser scanner should be combined with CCD camera named integrated vision system. This system can draw more clear pictures and take the advanced 3D location information. The suggested system is expected to help build unmanned-crane automation system.

  • PDF

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

A Study of Selecting Sequential Viewpoint and Examining the Effectiveness of Omni-directional Angle Image Information in Grasping the Characteristics of Landscape (경관 특성 파악에 있어서의 시퀀스적 시점장 선정과 전방위 화상정보의 유효성 검증에 관한 연구)

  • Kim, Heung Man;Lee, In Hee
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Relating to grasping sequential landscape characteristics in consideration of the behavioral characteristics of the subject experiencing visual perception, this study was made on the subject of main walking line section for visitors of three treasures of Buddhist temples. Especially, as a method of obtaining data for grasping sequential visual perception landscape, the researcher employed [momentum sequential viewpoint setup] according to [the interval of pointers arbitrarily] and fisheye-lens-camera photography using the obtained omni-directional angle visual perception information. As a result, in terms of viewpoint selection, factors like approach road form, change in circulation axis, change in the ground surface level, appearance of objects, etc. were verified to make effect, and among these, approach road form and circulation axis change turned out to be the greatest influences. In addition, as a result of reviewing the effectiveness via the subjects, for the sake of qualitative evaluation of landscape components using the VR picture image obtained in the process of acquiring omni-directional angle visual perception information, a positive result over certain values was earned in terms of panoramic vision, scene reproduction, three-dimensional perspective, etc. This convinces us of the possibility to activate the qualitative evaluation of omni-directional angle picture information and the study of landscape through it henceforth.

Development of Processing Program for Audio-vision System Based on Auditory Input (청각을 이용한 시각 재현장치의 분석프로그램 개발)

  • Heo, Se-Jin;Bang, Sung-Sik;Seo, Jee-Hye;Choi, Hyun-Woo;Kim, Tae-Ho;Lee, Na-Hee;Lee, Yu-Jin;Park, Ji-Won;Lee, Hui-Joong;Won, Chul-Ho;Lee, Jong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • The final goal of our research is developing not a simple collision a1ann equipment for the blinded walkers, but the apparatus (Audio- Vision System) which can simulate vision based on auditory information so that the blinds can figure the three dimensional space in front of them. On the way to the final goal, in this study, simulation software was developed and verified. Thirty normal volunteers were included in the subject group and the average age Was 25.8 years old. After being accustomed to the system by evaluating 10 blinded virtual spaces, the volunteers performed test using another set of 10 blinded virtual spaces. The results of test were scored by shape, center, margin, and gradient surface of objects in virtual space. The score of each checking point ranged from 1 to 5, and the full score was converted to 100. As results of this study, the total score ranged from 77 to 97 with the average of 88.7. In this study, a simulation software was developed and verified to have acceptable success rale. By combining to visual sensors, the vision-reconstruction system based on auditory signal (Audio-vision System) may be developed.