• Title/Summary/Keyword: three degrees-of-freedom

Search Result 316, Processing Time 0.022 seconds

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

OBSTACLE-AVOIDANCE ALGORITHM WITH DYNAMIC STABILITY FOR REDUNDANT ROBOT MANIPULATOR WITH FRUIT-ILARVESTING APPLICATIONS

  • Ryu, Y.S.h;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1063-1072
    • /
    • 1996
  • Fruit harvesting robots should have more diversity and flexibility in the working conditions and environments than industrial robots. This paper presents an efficient optimization algorithm for redundant manipulators to avoid obstacles using dynamic performance criteria, while the optimization schemes of the previous studies used the performance criteria using kinematic approach. Feasibility and effectiveness of this algorithm were tested through simulations on a 3-degrees-of-freedom manipulator made for this study. Only the position of the end-effector was controlled , which requires only three degrees of freedom. Remaining joints, except for the wrist roll joint, which does not contribute to the end-effector linear velocity, provide two degrees of redundancy. The algorithm was effective to avoid obstacles in the workspace even through the collision occurred in extended workspace, and it was found be to a useful design tool which gives more flexibility to design conditions nd to find the mechanical constraints for fruit harvesting robots.

  • PDF

Parametric study of piled raft for three load-patterns

  • Sawant, V.A.;Pawar, S.V.;Ladhane, K.B.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.115-131
    • /
    • 2012
  • Paper presents an improved solution algorithm based on Finite Element Method to analyse piled raft foundation. Piles are modelled as beam elements with soil springs. Finite element analysis of raft is based on the classical theory of thick plates resting on Winkler foundation that accounts for the transverse shear deformation of the plate. Four node, isoparametric rectangular elements with three degrees of freedom per node are considered in the development of finite element formulation. Independent bilinear shape functions are assumed for displacement and rotational degrees of freedom. Effect of raft thickness, soil modulus and load pattern on the response is considered. Significant improvement in the settlements and moments in the raft is observed.

Dynamics of a Projectile with a Passive Moveable Nose (가변탄두를 갖는 발사체의 동역학에 대한 기초연구)

  • Lee Hyun-Chang;Park Woo-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.308-313
    • /
    • 2006
  • The extent of impact dispersion is a function of parameters including gun geometry and tolerances, the foe control system, projectile manufacturing tolerances, etc. The study here investigates potential impact point accuracy improvement for a projectile realized by replacing the rigid nose cone wind screen with a passive nose. Toward this end, a nose projectile dynamic model is derived which consists of the standard six degrees of freedom similar to a rigid projectile plus three additional degrees of freedom associated with rotation of the nose with respect to the main projectile body. By Observing the pitch and yaw movement of the nose in the simulation results, it is believed to be possible to reduce the effects of uncertainties which is occurred at firing step.

  • PDF

Nominal Trajectories of an Autonomous Under-actuated Airship

  • Bestaoui Yasmina
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.395-404
    • /
    • 2006
  • The objective of this paper is to generate a desired flight path to be followed by an autonomous airship. The space is supposed without obstacles. As there are six degrees of freedom and only three inputs for the LSC AS200 airship, three equality constraints appear due to the under-actuation.

A discussion on simple third-order theories and elasticity approaches for flexure of laminated plates

  • Singh, Gajbir;Rao, G. Venkateswara;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.121-133
    • /
    • 1995
  • It is well known that two-dimensional simplified third-order theories satisfy the layer interface continuity of transverse shear strains, thus these theories violate the continuity of transverse shear stresses when two consecutive layers differ either in fibre orientation or material. The third-order theories considered herein involve four/or five dependent unknowns in the displacement field and satisfy the condition of vanishing of transverse shear stresses at the bounding planes of the plate. The objective of this investigation is to examine (i) the flexural response prediction accuracy of these third-order theories compared to exact elasticity solution (ii) the effect of layer interface continuity conditions on the flexural response. To investigate the effect of layer interface continuity conditions, three-dimensional elasticity solutions are developed by enforcing the continuity of different combinations of transverse stresses and/or strains at the layer interfaces. Three dimensional twenty node solid finite element (having three translational displacements as degrees of freedom) without the imposition of any of the conditions on the transverse stresses and strains is also employed for the flexural analysis of the laminated plates for the purposes of comparison with the above theories. These shear deformation theories and elasticity approaches in terms of accuracy, adequacy and applicability are examined through extensive numerical examples.

A Single Feedback Based Interference Alignment for Three-User MIMO Interference Channels with Limited Feedback

  • Chae, Hyukjin;Kim, Kiyeon;Ran, Rong;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.692-710
    • /
    • 2013
  • Conventional interference alignment (IA) for a MIMO interference channel (IFC) requires global and perfect channel state information at transmitter (CSIT) to achieve the optimal degrees of freedom (DoF), which prohibits practical implementation. In order to alleviate the global CSIT requirement caused by the coupled relation among all of IA equations, we propose an IA scheme with a single feedback link of each receiver in a limited feedback environment for a three-user MIMO IFC. The main feature of the proposed scheme is that one of users takes out a fraction of its maximum number of data streams to decouple IA equations for three-user MIMO IFC, which results in a single link feedback structure at each receiver. While for the conventional IA each receiver has to feed back to all transmitters for transmitting the maximum number of data streams. With the assumption of a random codebook, we analyze the upper bound of the average throughput loss caused by quantized channel knowledge as a function of feedback bits. Analytic results show that the proposed scheme outperforms the conventional IA scheme in term of the feedback overhead and the sum rate as well.

A Study on the Optimal Solution for the Manipulation of a Robot with Four Limbs (4지 로봇의 최적 머니퓰레이션에 관한 연구)

  • Lee, Ji Young;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1231-1239
    • /
    • 2015
  • We developed a robot that has four limbs, each of which has the same kinematic structure and has 6 degrees of freedom. The robot is 600mm high and weighs 4.3kg. The robot can perform walking and manipulating task by using the four limbs selectively. The robot has three walking patterns. The first one is biped walking, which uses two rear limbs as legs and two front limbs as arms. The second one is biped walking with supporting arms, which is basically biped walking but uses two arms as supporting legs for increasing stability of the robot. The last one is quadruped walking, which uses all the four limbs as legs. When a task for the robot is given, the robot approaches the task point by selecting an appropriate walking pattern among three walking patterns and performs the task. The robot has many degrees of freedom and is a redundant system for a three dimensional task. We propose a redundancy resolution method, in which the robot’s translational move to the task point is modeled as a prismatic joint and optimal solutions are obtained by optimizing some performance criteria. Several simulations are performed for the validity of the proposed method.

Buckling Analysis of Grid-Stiffened Composite Plates Using Hybrid Element with Drilling D.O.F.

  • Cho, Maenghyo;Kim, Won-Bae
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need to be designed to be buckled in skin-buckling mode.

  • PDF

Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Eun-Jin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.105-122
    • /
    • 2001
  • A new three-dimensional 13-node hexahedral element with rotational degrees of freedom, which is designated as MR-H13 element, is presented. The proposed element is established by adding five nodes to one of the six faces of basic 8-node hexahedral element. The new element can be effectively used in the connection between the refined mesh and the coarser mesh. The derivation of the current element in this paper is based on the variational principles in which the rotation and skew-symmetric stress are introduced as independent variables. Numerical examples show that the performance of the new element is satisfactory.