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Nominal Trajectories of an Autonomous Under-actuated Airship

Yasmina Bestaoui

Abstract: The objective of this paper is to generate a desired flight path to be followed by an
autonomous airship. The space is supposed without obstacles. As there are six degrees of
freedom and only three inputs for the LSC AS200 airship, three equality constraints appear due

to the under-actuation.

Keywords: Autonomous airship, trajectory generation, under-actuation.

1. INTRODUCTION

Lighter than air vehicles suit a wide range of
applications, ranging from advertising, aerial
photography and aerial inspection platforms, with a
very important application in the areas of environ-
mental, biodiversity, and climatological research and
monitoring. Airships offer the advantage of quiet
hover with noise levels much lower than helicopters.
Unmanned remotely-operated airships have already
proved themselves as camera and TV platforms and
for specialized scientific tasks. An actual trend is
toward autonomous airships.

Fig. 1 presents the AS200 airship. It is basically a
large gas balloon. Its shape is maintained by its
internal overpressure. The only solid parts are the
gondola, a tail rotor with horizontal axis of rotation,
the main rotor with a varying tilt angle and the tail
fins. It is actually a remotely piloted airship designed
for remote sensing, being transformed to be fully
autonomous.

A basic problem to be solved by autonomous
vehicles is the problem of trajectory generation.
Trajectory generation means the generation and
execution of a plan for moving from one location to
another location in space to accomplish a desired task.
The motion generation module generates a nominal
state space trajectory and a nominal control input.
Trajectory prediction consists in computing reference
values to be given to the controller.

The problem of finding the time-optimal trajectory
for a fully actuated robot manipulator along a
specified path is a classical one in robotics. This
problem has been solved by algorithims proposed by
[1-5]. The algorithms find the minimum time scaling
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of the path with respect to the actuator constraints;
dynamic ones [1,4] and technological ones [2,6]. The
problem of finding a smooth interpolating curve is
well understood in Euclidean spaces, but it is not so
clear in curved spaces [7]. When planning Cartesian
trajectories, it is usually possible to characterize the
performance of different trajectories [2,4,6,7-17].

In [18], in the first part, the trajectories considered
are trim trajectories. The general condition for trim

‘requires that the rate of change of the magnitude of

the velocity vector is identically zero, in the body
fixed frame. The trim problem is generally formulated
as a set of non linear algebraic equations. The solution
trajectories are helices with constant curvature and
torsion. In the second part, variable curvature helices
are investigated. In [9], a 3rd order expansion is used
for transition maneuvering between two helices. [19]
investigate optimal trajectory planning for hot air
balloons in linear wind fields. The objective function
to be minimized is fuel consumption with respect to
free end states.

This article is concerned with methods of
computing a trajectory in space that describes the
desired motion. The contribution of this paper is the
characterization of trajectories, considering the under-
actuation. This paper consists of 6 sections. Section 2

Fig. 1. The AS200 airship.
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presents the kinematics while the following one
introduces the mechanical system. Section 4
introduces the relationship between trajectory
generation algorithms and under-actuation. Simulation
results are discussed in Section 5 and finally some
concluding remarks are given in section 6.

2. KINEMATICS

Consider a rigid body moving in free space.
Assume any inertial reference frame {F} fixed in
space and a frame {M} fixed to the body at the center
of gravity. At each instant, the configuration (position
and orientation) of the rigid body can be described by
a homogeneous transformation matrix corresponding
to the displacement from frame {F}to frame {M}.

The origin C of {M} coincides with the center of
gravity of the vehicle. Its axes (X, Y. Z,) are the
principal axes of symmetry when available. They
must form a right handed orthogonal normed frame,
The position of the vehicle C in {F} can be described

by m=(xy z)T while the orientation is given by
m=(@80 w) with o Roll, 8 pitch and y Yaw
angles. The orientation matrix R is given by

cycld —sych+cyslsdp  sysg+cysOeg
R=|sycld cycd+sysOsp —cwsp+swsOcd |, (1)
—s6 cOsgp clcp

where ¢f =cos(6) and 56 =sin(6). This description
is valid in the region —%<9 <§. A singularity of

this transformation exists for: 6 = % tkr, keZ.

The kinematics of the airship can be expressed in the
following way:

e
77‘ 03*3 J(772) Q ’ ’

2
where

1 s¢.tanf c@.tand

J(m)=10  cf -s¢ |, (3)
0 sp/cl0 cg/c
and
u p
V={v|, wo=|q]|. )
w r

Fig. 2. The airship frames (cg: center of gravity, cv:
center of volume).

o physically corresponds to the angular velocity of
the rigid body, while V' is the linear velocity of the
origin C of the frame {M}.

3. MECHANICAL SYSTEM

3.1. Dynamics

In this section, analytic expressions for the forces
and moments of a system with added mass and inertia
such as an airship are introduced [5,20-22]. An airship
is a lighter than air vehicle using a lifting gas (helium
in this particular case). We will make in the sequel
some simplifying assumptions: the earth fixed frame
is inertial, the gravitational field is constant, the
airship is well inflated, the density of air is uniform.
In [23], we considered the case of an airship with
small deformations analyzed via the Updated
Lagrangian Method.

The translational part being separated from the
rotational part [20], the dynamic equations (Euler —
Poincaré) are given by:

MV =—w* MV —b(.)+ f(u),

‘ )
Jo=-w*Jo-V*MV - p()+7(u),
where
b(.)= R e;(mg — By+ D, V, (6)
B()=(R"e; * BG)B+ D, . (7

For a system with added masses, the term V * MV is
non zero. M and J are respectively the vehicle’s
mass and rotational tensors and t, § and f, b represent
respectively the control and non-conservative torques
and forces in body axes. m is the mass of the airship,
propellers and actuators. The tensor M includes both
the airship’s actual mass as well as the virtual mass
elements associated with the dynamics of buoyant
vehicles. The tensor J includes both the airship’s
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actual inertias as well as the virtual inertia elements
associated with the dynamics of buoyant vehicles. As
the airship displays a very large volume, its added
masses and inertias become very significant [21]. We
will assume that the added mass coefficients are
constant. They can be estimated from the inertia ratios
and the airship weight and dimension parameters.
Added mass should be understood as pressure-induced
forces and moments due to a harmonic motion of the
body which are proportional to the acceleration of the
body [21]. Dy is the 3x3 aerodynamics forces
diagonal matrix while Dq is the 3x3 aerodynamics
moments diagonal matrix. e;= (0 0 1)" a unit vector.
The 3x1 buoyancy force vector Be; with:

B=phg, (®)

where Ais the volume of the envelope, p is the
difference between the density of the ambient
atmosphere p,;; and the density of the helium ppejiym in
the envelope, g is the constant gravity acceleration.

FG_z(xb Yy zp)represents the position of the

center of buoyancy with respect to the body fixed
frame.

The aerodynamic force can be resolved into two
component forces, one parallel and the other
perpendicular to the direction of motion. Lift is the
component of the aerodynamic force perpendicular to
the direction of motion and drag is the component
opposite to the direction of motion. As the airship is a
slow moving object in the air, we can assume a linear
relationship between the speed and the drag.

DVzdiag(_Xu -T _Zw)’ ©)
D =diag(-L, -M, -N,). (10)

The gravitational force vector is given by the
difference between the airship weight and the
buoyancy acting upwards on it;

(mg—B)sH
R e;(mg - B)=| —(mg - B)cl.s |. (11)
—(mg —B)cO.cp

The gravitational and buoyant moments are given by:

zpclsp — y,ccd
(Rre3 * BG]B:B xpclcg + 2,50 | (12)
—y,,56 — x,cl5¢

If a system is fully actuated, it can be steered along
any given curve on the configuration manifold, i.e it is
controllable. This is not true in general for an under-
actuated system. However, an under-actuated system
can be locally controllable if it enjoys the property of
nonholonomy. The existence of nonholonomic const-

raints translates into the fact that the system can be
locally steered along a manifold of dimension larger
than the number of independent control inputs [3,13-
15,18,21]. However, practical methods have only been
found for simple underactuated systems.

3.2. Propulsion

An airship is propelled by thrust. Propellers are
designed to exert thrust to drive the airship forward.
The most popular propulsion system layout for
pressurized non rigid airships is twin ducted
propellers mounted either side of the envelope bottom.
Another one exists in the tail for torque correction and
attitude control. The airship AS200 is an under-
actuated system with two types of control in a low
velocity flight: forces generated by thrusters and
angular inputs controtling the direction of the thrusters
(v is the tilt angle of the propellers)

Ty, siny 0
F'l = 0 , F2 = TT , (13)
Ty cosy 0

where Ty, and Tr represent respectively the main and
tail thrusters.

Thus in building the non linear six degrees of
freedom mathematical model, the additional following
assumptions are made:

0 P
BG={0]|, BG=|0| (14)
R 0

If we consider the plane XZ as a plane of symmetry,
the mass and inertia matrices can be written as:

m+ X, 0 X,
M= 0 m+Y, 0 |, (15)
Z, 0 m+Z,
I.+L, 0 -1,
J= 0 I, +M, 0 . (16)
-1, 0 I, +N,

If the center of gravity sits below the center of
buoyancy, then ﬁ:(o 0 zb)T.
to gain insight into the geometric structure of the

equations since this knowledge is useful in motion
planning and control.

It is important

4. TRAJECTORY GENERATION AND
UNDERACTUATION

In this paragraph, nominal trajectories are charac-
terized, the model is supposed perfect and any
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perturbation such as wind or sensor disturbance is
neglected. The three equality constraints deriving
from the under-actuation are sought. Considering the
dynamics of the airship and its propulsion, the
following dynamics equations can be written:

Ty siny .
f@)=MV+o*MV +b(.)=
Ty, cosy

T(u)=J&)+w*Jw+V*MV+ﬂ(.)

0 0 (18)
=| R'Tysiny |=| B £ (u) |,
ATy P f ()
where the kinematics are:
p=¢-v S0,
q=0Cs+y SPCh, (19)

r=—0S8¢+y CHCo.

First equality constraint: The roll moment being
zero (see (18)), 7; =0gives

J“[é—:}}se—y}éw]
+(J33 ‘Jzz)[écfl’+¢S¢C0][—58¢+¢C¢C6']
+D, (4}5— y}saj +2,BCOSH=0. (20)
Second equality constraint: Pl3 fi=1, gives
I 1 +(My = Myz Yuw
+(Jy —J33)[¢'5—y}30j[—éS¢+;}Cg}ﬁC9]
+D, (éc¢+y}séscej—zb339+a3Mni¢

+E3M22w[éc¢+ y}Séﬁce)

—PI3M22v[—éS¢+ y}c;}ﬁcej

+R’D,u+ R’ (mg - B)S6 =0, 1)
where
x=0CH—04Sp+ySPHCO+w §CHCO— w0 SHSH.

Third equality constraint: le f» =13 gives

Tr , (7 -

Ja3 '+ (Myy = My Juv
+(J22—J“)[q'ﬁ—y}[?a](éCqﬁw}Sq'ﬁcaj (22)
+N, (—éS¢+y'/C¢'5C6j+RzM22\;

—Panw[(}}—¢S9J+Q2Muu(—és¢+y}cg}scej
+B’D,v - B (mg - B)S¢CH =0,
where
2'=—0S4—0pCh+y CHCO -y $pSHCO -y HCSP.

The following approach is considered. The
variations of the roll and pitch angles as well as the
longitudinal velocity are imposed and the influence of
the under-actuation on the variations of the yaw angle,
the lateral and vertical velocities are studied.

The first equality constraint (20) is equivalent to the
resolution of an ordinary differential equation of the
form

a(t);}}+b(t)[:/}] +e()y+d(6)=0, (23)
where

a(t)=J,,(56),

b(1)= (/33— )(CoSpC?6),

c(t)=-SOD, +2(Jy; — J, )CIC?¢

—(Jy; +J33 — Jpy )OCO, @4
1 33

d(t)=-2,BCOSH~J;; §~ D, ¢
2
+(J33 -2 )0 SPCo.

If E(t)=y./(t) then the non autonomous generalized

logistic equation must be solved:
a(t)E(1)+b())(E(0)) +c(t)2()+d () = 0. (25)

The third equality constraint (22) can be written-as:
w(t)=agp +oqu+av+ozuv+ay v, (26)

where

a'o(Jyn = Jy )~ B (mg - B)COSp+ D, (y}cec¢-éS¢J

ay =

~B* My, ['/.’39—4}5)



Nominal Trajectories of an Autonomous Under-actuated Airship 399

Jss [;}}cec¢—és¢—y}ésec¢—Wcas¢-é¢c¢)

~R’ My, ('/'159— ¢]

>

[y}cec¢—és¢jM“

a1=—

(WSQ—Cb)Mzz :
P T
(l// S0 - ¢j My, a7
a; = My -Mp
R My, [V/SH—¢]
-1
ay=——,
and

ay =(—y}2sacas¢—;}/ésec¢+y}q'sces¢+é¢}c¢}

The second equality constraint (21) gives:

+ pu+ u2+ uv + u2v+ u{/
0 1 2 3 4 5

(28)
+Bsv+ By v+ Py =0,
where
Bo=PBvt+ B3, B=B"1+rafstayf's,
Br=PB'sx, P=p'sar+a3f's,
Py =P0'sa3, Ps=PB'say, (29)
Bs =PB2+a B, Br=aupf's,
By =P,
Blo=JInB"+(J11-J33)B"
+Dq[y}ces¢+éc¢J

~ Bz,S6 + R (mg - B) S0,
B =w COSH+0Ch+y $COCH
~w0SOSH—045S,
By =—04S+y $CHCO

+y0SOSH—y2CHCOSo,

' 3
ﬂ1=P{Xu,

B2 = —H3M22[v>cec?¢—és¢),

B3 =R My [l/./C95¢+éC¢),
B4 =R My,
B's =(My; — My).

4.1. Roll and pitch angles constant
The differential equation

2
aw+b(wj +cwy+d=0, (30)

where
a=-J;(56),
b=(J33 = Jp )(SPCO)(CHCH),
¢=D,(-56),
d = ~z,BCOS}

G

admits an analytic general solution.

By using the method of separation of variables and
integration. by partial fractions, in the constant
coefficient case, logistic equation can be solved and
the behavior of all solutions is analyzed [24-27].

For ¢=0;
Lyt
[x

w(t)=woe (32)
For 6=0;
BZb
w(t)=t |—t sty (33)
(1. 1)
For the particular case, where l// is constant,
classical trim trajectories are encountered.
4.1.1 !// is constant:
p=cst=g
G=cst=6, |. (34)
Ww=wyt

The first equality constraint becomes a second order
polynomial equation:

2
b(q}/] tep+rd=0. 35)
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The third equality constraint gives
w(t)=ag+oyu+av+azuv+ayv, (36)

where

2
_ 4 SHCHS¢(J22 —J”)"‘Dr V/C@C¢

Qy -
Ry S6My,

N ~B2(mb—B)COS$ +J33 COCH

5 -
Ry S6M;,
COCopM,
o =——,
SOM,,
D
ay = —_— s
Moy y SO 37)
M, -M k
ay =11 : 2
R*My,y 56
1
oy =—,
w SO
while the second equality constraint gives
2
vz_ﬁo +ﬂ1”+ﬂ2”2 38)
Bs + Bu + Pyu
for u = v =0,
otherwise
Lo+ fu+ ﬂ2u2 + fyuv+ ﬁ4u2v+ ﬂsu{/ (39)

+ﬂ6v+ﬁ7{7+ﬂ8i¢=0

with the parameters g, given in (29)-(31).

When u=v=w=0, we retrieve the classical kine-
matics equations of the trim trajectories

)'c:a cos , H+b sin(. 1),

x (WO ) x Yo ) (40)
y= ay COS(WO f) + by SIH(WO Z))
z=— sin{(@ Juyy + cos(6y ) sin(g )vy + cos(8;) cos(gy Iwg,

where

a, =cos(6y )uy + sin(6, )sin(¢, Jvy + sin(by ) cos(dy Iy,

b, =a,,
b, = —cos(dy)Vvy + sin(dy )wy, (41)
a, =—b,.

Integrating these equations, we obtain -

. b .
x= a_xsin(_‘//i s)— —xcos(% $)s
L) ¢ Yo ‘
b, . v '
y= __xsin(fﬂ §)— ﬁx—cos(ﬂ 5), (42)
. Ve . Ve
¥ Yo
z
zZ=—3,
V

e

where s represents the curvilinear abscissa and we
suppose a uniform motion such that

s:Vet:t\/ug +v§ +w§. (43)
The trajectories represented by these equations (44)
are classical helices rotated around the vertical axe by
by

a

an angle of arctan (
X

] and have a constant curvature
and torsion
A4+ B )
\/Vz (A)% +Bf)+ Cf

on4

T= , (45)
(£ B+
where
b
4=, g =22, (46)
Yo Vo
c, =2 y=Yo 47)
f v

Fig. 3. Trim trajectory.
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The trim condition can be a turning (about the vertical
axis), descending or climbing (assuming constant air
density and temperature), side-slipping maneuver at
constant speed. More conventional flight conditions
such as hover, cruise, auto-rotation or sustained turns
are also trims.

4.1.2 1// is not constant:
Fig. 4 shows the solution t//(t) of the differential

in (20) while Fig. 5 shows its derivative l//(t) .
Even though there is a nonlinear variation of ¥ in

the beginning of the simulation, the yaw angle has a
quasilinear variation after a certain time.

A transitional behavior can be recognized before the
yaw velocity attains a permanent (constant) value.

4.2. Roll and pitch angles linear functions of time
In this paragraph, the roll and pitch angles are
assumed to have linear variations:

0=00t+6y, ¢=¢yt+d,.
When the coefficients of the non autonomous logistic
equation are no longer constant, no explicit solutions

can be found in general and the equilibrium point may
become unstable [24]. For a study to be complete, the

s000] /
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1000 /
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Fig. 4. Yaw angle.
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Fig. 5. Yaw derivative.

existence of stable periodic or stable bounded
solutions is an essential part of qualitative theory of
this differential equation, in order to determine non
trivial solutions and study their behavior [24-27].
Nkashama [27] proved that the logistic equation with
positive non autonomous bounded coefficients has
exactly one bounded solutions that is positive and
does not tend to the zero solution.

Solving the first equality constraint, the roll

moment being null, V7, implies L, ¢, =0=¢,=0.
Rearranging the first equality constraint with this
requirement gives: éo CooS¢y =0, three cases are
possible

60=0 or ¢y =0 or ¢0=%.
The first case: trim trajectories has already been
studied in paragraph 4.1.1.

If the roll angle is null, the following differential
equations must be solved:

v+ y}(mbéo CH/S9J=O,
where asz/(Ix),

b=—(1,-1,-1,)/(L,), (48)
the following derivative (//(t) is obtained

_a

60 S6,>567be 00

w(t)=- (49)

—cosh % + sinh b
6o 0o
The case ¢, =% gives the following differential

equations

v+ y}(al +a, 00 cmsaj+a3ca/sa =0,
where  a;=L1,/(1,),
ay=(I,-1,+1,)/(L,),

(50)
a3 = BZb /[x

The third equality constraint gives

W=0] +Suv+du+ v+ . 5hH
where

AR Y v
5, =602 12 x {VrCQ __Lyceo ’
BM, BSOM, })21‘//S€My
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62 = - Y al 5
Py SOM,
COM

53 = Y )
S€My

Y.

54 = Y .

wSOM,
1

Sy =——.

v SO (52)

Once the yaw angle is calculated, the linear and
angular velocities are determined as well as the 3D
path.

5. SIMULATION RESULTS

The lighter than air platform is the AS200 by
Airspeed Airships. It is a remotely piloted airship
designed for remote sensing. It is a non rigid 6m long,
1.4m diameter and 8.6m’ volume airship equipped
with two vectorable engines on the sides of the
gondola and 4 control surfaces at the stern. Envelope
pressure is maintained by air fed from the propellers
into the two ballonets located inside the central
portion of the hull. These ballonets are self regulating
and can be fed from either engine. The engines are
standard model aircraft type units. The propellers can
be rotated through 120 degrees. During flight the
rudders and elevators are used for all movements in
pitch and yaw.

In Table 1, five cases are presented for a normalized
simulation time = 1. For each case, four subplots are
presented: the first one presents the trajectory in space,
the second one the variation of the yaw angle y, the
linear velocities v and w and finally the angular
velocities p, g, .

The 3D trajectory in Fig. 6 represents a straight line

as the angular velocity is null while the linear velocity
is constant. The yaw angle is constant. This 3D

Table 1. Five cases for a normalized simulation time
=1.

Case 1 2 3 4 5
V4 T T w
%o o | % | Yy | o | %o
o 0 0 0 0.1 0.1
T T
o | o | % | % | % | %
0y 0 0 0.1 0 0.1
u 1 1 1 1 1
i 0 0 0 0 0.1
Figure 6 7 8 9 10

i
05
-1 \ g]_ 0
2 .
: 0.5
1
o 05 A
-1 a a 05 1
D 1
05 ] 05
; [s 4
o4 o 0
15 0.5
2 -1
0 05 1 0 05 1
Fig. 6. Case #1.
0
0
0.1
05 3 02
-1 .
; 1 0.3
05 05
. 0.4
10 0.5 1
0.2 0.2
D 0.1
0.2 0
z o
> a4 a 01
06 0.2
08 -03
) 05 1 0 05 1
Fig. 7. Case # 2.
0
0 005
o1 . O
= 015
02 -
02 - , 0
' -0.25
gz o 0 05 1

1 0.2

o 0

z / o \
> 05 o .01 \
-1 0z ‘\\'
15 03
0 05 1 0 05 1

Fig. 8. Case # 3.

trajectory in Fig. 7 represents a part of a helix with
constant curvature and torsion. The yaw angle has a
linear variation while the angular and linear velocities
are constant. As can be seen in Fig. 8, after a transient
phenomenon, in case #3 the yaw angle has a linear
variation and the path tends to a classical helix with
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Fig. 10. Case # 5.

constant curvature and torsion.

In case #4, Fig. 9 shows that the angular and linear
velocities have a slight nonlinear variation. After a
certain time, they tend to have permanent values. For
case #5, when the derivative of the longitudinal
velocity is non zero, the nonlinear phenomenon is
amplified in Fig. 10.

6. CONCLUSION

This paper addresses the problem of characterizing
continuous paths in 3D, taking into account the under-
actuation. Three differential algebraic equations must
be solved as there is six degrees of freedom and three
inputs. The constraints on the yaw angle is in the form
of a generalized logistic equation while the others are
differential algebraic equations in v and w, when the
variations of the longitudinal velocity u, and the pitch
and roll angles &, ¢ are imposed. The role of the

trajectory generator is to generate a feasible time
trajectory for the UAV. Once the path has been
calculated in the Earth fixed frame, motion must be

investigated and reference trajectories determined
taking into account actuators constraints. This is the
subject of our actual research. This method can be
suitable for precise flight path tracking tasks, such as
in landing approach. As a further application of the
trajectory determination, the prediction of a cone of
feasible future positions can be determined to evaluate
the influence of the different kinematic parameters on
the future flight path.

This methodology can be applied to other types of
UAV, taking into account their characteristics. For
fixed wing aircraft or helicopter, the added mass and
inertia are neglected.
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