• Title/Summary/Keyword: threading

Search Result 155, Processing Time 0.03 seconds

Development study of New Weaving Structures by Korean Traditional Patterns - Focus on Tteoksal Patterns - (한국 문양을 활용한 직물 구조 디자인 개발 - 떡살무늬를 중심으로 -)

  • Yoo, Hyun-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.190-197
    • /
    • 2008
  • Weaving design which is to be designed based on the machine words threading and treading is characterized by its strong limitation of expression. The concept of design has been set based on the patterns on the wooden rice-cake mold which arechosen from many Korean traditional patterns since the expressions of patterns limited by the wooden rice-cake mold is easy to be grafted upon each other. Particularly, literal patterns and geometrical patterns contain religious desire and wishes that are generated from man's fear and wonder about Nature rather than from the pursuit of beauty which is general characteristics of patterns. Based on these images, the twill technique, especially threading of Sally Nielson's rosepath which is easy in formal expressions is used to design Korean style patterns into the weaving structure. It is hoped that this study will provide an opportunity to introduce Korean style patterns to the weavers of the world and that the weaving designs will actively be utilized in the Korean industries so that they can acquire high value-added assets and commercialize our superior culture, thus being of great help to developing our cultural industr.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

Fast Generation of Digital Video Holograms Using Multiple PCs (다수의 PC를 이용한 디지털 비디오 홀로그램의 고속 생성)

  • Park, Hanhoon;Kim, Changseob;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.509-518
    • /
    • 2017
  • High-resolution digital holograms can be quickly generated by using a PC cluster that is based on server-client architecture and is composed of several GPU-equipped PCs. However, the data transmission time between PCs becomes a large obstacle for fast generation of video holograms because it linearly increases in proportion to the number of frames. To resolve the problem with the increase of data transmission time, this paper proposes a multi-threading-based method. Hologram generation in each client PC basically consists of three processes: acquisition of light sources, CGH operation using GPUs, and transmission of the result to the server PC. Unlike the previous method that sequentially executes the processes, the proposed method executes in parallel them by multi-threading and thus can significantly reduce the proportion of the data transmission time to the total hologram generation time. Through experiments, it was confirmed that the total generation time of a high-resolution video hologram with 150 frames can be reduced by about 30%.

High Resolution Depth-map Estimation in Real-time using Efficient Multi-threading (효율적인 멀티 쓰레딩을 이용한 고해상도 깊이지도의 실시간 획득)

  • Cho, Chil-Suk;Jun, Ji-In;Choo, Hyon-Gon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.945-953
    • /
    • 2012
  • A depth map can be obtained by projecting/capturing patterns of stripes using a projector-camera system and analyzing the geometric relationship between the projected patterns and the captured patterns. This is usually called structured light technique. In this paper, we propose a new multi-threading scheme for accelerating a conventional structured light technique. On CPUs and GPUs, multi-threading can be implemented by using OpenMP and CUDA, respectively. However, the problem is that their performance changes according to the computational conditions of partial processes of a structured light technique. In other words, OpenMP (using multiple CPUs) outperformed CUDA (using multiple GPUs) in partial processes such as pattern decoding and depth estimation. In contrast, CUDA outperformed OpenMP in partial processes such as rectification and pattern segmentation. Therefore, we carefully analyze the computational conditions where each outperforms the other and do use the better one in the related conditions. As a result, the proposed method can estimate a depth map in a speed of over 25 fps on $1280{\times}800$ images.

Simulator for Performance Analysis of Wireless Network based on Microsoft Windows Operating Systems (MS 윈도우즈 운영체제 기반의 무선 네트워크 성능 분석 시뮬레이터의 설계 및 구현)

  • Choi, Kwan-Deok;Jang, Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.155-162
    • /
    • 2010
  • To ensure accurate measurements of wireless network performance, it should be collected real-time data which are transmitted between a large number of nodes in the actual network environment. Therefore, it is necessary to develop simulation tool for finding optimal network system design method such as media access control, routing technique, ad-hoc algorithm of node deployment while overcoming spatial and temporal constraints. Our research attempts to provide an improved architecture and design method of simulation tool for wireless network is an application of multi-threading technique in these issues. We finally show that usability of the proposed simulator by comparing results derived from same test environment in the wireless LAN model of our simulator and widely used network simulation package, NS-2.

Performance and Scalability of OpenMP Programs on Chip-MultiThreading Server (칩 멀티쓰레딩 서버에서 OpenMP 프로그램의 성능과 확장성)

  • Lee Myung-Ho;Kim Yong-Kyu
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.137-146
    • /
    • 2006
  • Shared Memory Multiprocessor (SMP) systems adopting Chip-level MultiThreading (CMT) technology are becoming mainstream servers in commercial applications and High Performance Computining (HPC) applications as well. OpenMP has become the standard paradigm to parallelize applications for SMP mostly because of its ease of use. As the demand for more computing power in HPC applications is growing rapidly, obtaining high performance and scalability for these applications parallelized using OpenMP API's will become more important. In this paper, we study the performance and scalability of HPC applications parallelized using OpenMP, SPEC OMPL (standard OpenMP benchmark suite), on the Sun Fire E25K server which adopts CMT technology. We also study the effect of CMT on SPEC OMPL.

A Study on the Optimization of Offsite Consequence Analysis by Plume Segmentation and Multi-Threading (플룸분할 및 멀티스레딩을 통한 소외사고영향 분석시간 최적화 연구)

  • Seunghwan, Kim;Sung-yeop, Kim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.166-173
    • /
    • 2022
  • A variety of input parameters are taken into consideration while performing a Level 3 PSA. Some parameters related to plume segments, spatial grids, and particle size distribution have flexible input formats. Fine modeling performed by splitting a number of segments or grids may enhance the accuracy of analysis but is time-consuming. Analysis speed is highly important because a considerably large number of calculations is required to handle Level 2 PSA scenarios for a single-unit or multi-unit Level 3 PSA. This study developed a sensitivity analysis supporting interface called MACCSsense to compare the results of the trials of plume segmentation with the results of the base case to determine its impact (in terms of time and accuracy) and to support the development of a modeling approach, which saves calculation time and improves accuracy. MACCSense is an automation tool that uses a large amount of plume segmentation analysis results obtained from MUST Converter and Mr. Manager developed by KAERI to generate a sensitivity report that includes impact (time and accuracy) by comparing them with the base-case result. In this study, various plume segmentation approaches were investigated, and both the accuracy and speed of offsite consequence analysis were evaluated using MACCS as a consequence analysis tool. A simultaneous evaluation revealed that execution time can be reduced using multi-threading. In addition, this study can serve as a framework for the development of a modeling strategy for plume segmentation in order to perform accurate and fast offsite consequence analyses.

Development of RTSP Media Server Using IOCP &Multi-Thread (IOCP와 Multi-Thread를 이용한 RTSP Media Server 개발)

  • 김수진;김익형;권장우
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.767-770
    • /
    • 2002
  • 본 논문에서는 RTSP 프로토콜을 제어하기 위한 서버 시스템을 IOCP 기반의 Multi-Thread 기법을 이용하여 구현하는 방법을 소개한다. 다수의 클라이언트에 대한 응답을 Thread로 구성하는 부분에서 Multi-Threading을 이용함으로써 수행 속도를 높이고 Winsock2에서 제공하는 IOCP(T/O Completion Port)를 이용하여 견고하고 확장이 용이한 RTSP(Real Time Streaming Protocol) 스트리밍 서버를 개발하였다.

  • PDF

A Parallelization Technique with Integrated Multi-Threading for Video Decoding on Multi-core Systems

  • Hong, Jung-Hyun;Kim, Won-Jin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2479-2496
    • /
    • 2013
  • Increasing demand for Full High-Definition (FHD) video and Ultra High-Definition (UHD) video services has led to active research on high speed video processing. Widespread deployment of multi-core systems has accelerated studies on high resolution video processing based on parallelization of multimedia software. Even if parallelization of a specific decoding step may improve decoding performance partially, such partial parallelization may not result in sufficient performance improvement. Particularly, entropy decoding has often been considered separately from other decoding steps since the entropy decoding step could not be parallelized easily. In this paper, we propose a parallelization technique called Integrated Multi-Threaded Parallelization (IMTP) which takes parallelization of the entropy decoding step, with other decoding steps, into consideration in an integrated fashion. We used the Simultaneous Multi-Threading (SMT) technique with appropriate thread scheduling techniques to achieve the best performance for the entire decoding step. The speedup of the proposed IMTP method is up to 3.35 times faster with respect to the entire decoding time over a conventional decoding technique for H.264/AVC videos.