A new type of the human TSA homologous gene was cloned from a HeLa cell cDNA and characterized. The gene product consists of 161 amino acids with a molecular mass of 16,900. The TSA homologous protein, as a new 6th member of the human TSA (hTSA VI), exerted a thioldependent peroxidase activity with the use of thioredoxin system as a physiological electron donor. The values of $V_{max}/K_m$ of hTSA VI for $H_2O_2$ and t-butyl hydroperoxide (t-BOOH) were calculated as $5.53{\times}10^{-2}$ and $3.70{\times}10^{-2}$, respectively. This implies that hTSA VI is a peroxidase, which reduces $H_2O_2$ and t-BOOH. The mutation of $Cys^{47}$ to serine resulted in a complete loss of the peroxidase activity. This suggests that $Cys^{47}$ acts as a primary site of catalysis. The analysis of the tryptic digest derived from hTSA VI revealed that the $Cys^{47}$ exists as a free thiol form. Taken together, these results suggest that the TSA homologous protein is a new type of the human family, which exerts thioredoxin-linked peroxidase activity toward $H_2O_2$ and alkyl hydroperoxide.
Thioredoxin reductase (TrxR), a component of the redox control system involving thioredoxin (Trx), is implicated in defense against oxidative stress, control of cell growth and proliferation, and regulation of apoptosis. In the present study a stable transfectant was made by introducing the vector pcDNA3.0 harboring the fission yeast TrxR gene into COS-7 African green monkey kidney fibroblast cells. The exogenous TrxR gene led to an increase in TrxR activity of up to 3.2-fold but did not affect glutathione (GSH) content, or glutaredoxin and caspase-3 activities. Levels of reactive oxygen species (ROS), but not those of nitric oxide (NO), were reduced. Conversely, 1-chloro-2,4-dinitrobezene (CDNB), an irreversible inhibitor of mammalian TrxR, enhanced ROS levels in the COS-7 cells. After treatment with hydrogen peroxide, the level of intracellular ROS was lower in the transfectants than in the vector control cells. These results confirm that TrxR is a crucial determinant of the level of cellular ROS during oxidative stress as well as in the normal state.
Thioredoxin is a multifunctional protein that is ubiquitous in microorganisms, animals and plants. Previously, the expression of the Escherichia coli thioredoxin gene (trxA) was found to be negatively regulated by cAMP. In the present study, the effect of temperature on the expression of the E. coli trxA gene was investigated. In order to examine the temperature effect, the fusion plasmid pCL70 that harbors the E. coli trxA P1P2 promoter was used. The other two fusion plasmids, pJH3 and pMH521 that were constructed in different vectors which harbor the E. coli trxA P2 promoter, were also used. When the E. coli strain MC1061/pCL70 was grown in a rich medium at $25^{\circ}C$, $34^{\circ}C$ and $42^{\circ}C$, the cells grown at $42^{\circ}C$ gave the highest $\beta$-galactosidase activity. The E. coli MC1061/pJH3 and MC1061/pMG521 cells showed increased $\beta$-galactosidase activity after the shift of the culture temperature to $42^{\circ}C$. The wild-type trxA gene of the E. coli MC1061 cells produced much higher thioredoxin activity at the higher temperature. These results support the conclusion that the E. coli trxA gene is regulated in a temperature-dependent manner. Especially the expression from its P2 promoter appeared to be sensitive to temperature.
Du, Hui;Kim, Sunghan;Hur, Yoon-Sun;Lee, Myung-Sok;Lee, Suk-Ha;Cheon, Choong-Ill
Molecules and Cells
/
v.38
no.2
/
pp.187-194
/
2015
Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.
Background/Aims: It is well recognized that all aerobic cells have the protective mechanisms in order to minimize the tissue damage induced by various reactive oxygen species(ROS). Thioredoxin peroxidase(TPX) which has been recently identified and characterized functions to convert peroxide to water. The protein is also found in various subtypes(TPX-A & B, MER5, HS22 and HORF-06) and is known to be ubiquitous in most human cells. Especially, ischemic brain injuries, partial hepatectomy and radiation induced DNA damages. In treating lung cancer, radiation therapy has a major place in the local control and the relief of symptoms, but radiation induced free radical injury and resulting pulmonary fibrosis has been the major drawback of the therapy. However, little is known about the protective mechanisms and biologic modulations against radiation-induced tissue damages. Methods: Eighteen mice were divided into six groups, 3 in each group, and fifteen had received 900cGy of radiation. The mice were sacrificed according to the pre determined time schedule; immediate, 1, 2, 3 and 6 weeks after irradiation. Extracts were made from the lungs of each mice, Western blot analysis of various subtypes of TPX were done after SDS-P AGE. Examination of H & E stained slides from the same irradiated specimens and the control specimens were also performed. Results: No difference in the intensity of the immunoreactive bands in the irradiated lung samples of the mice compared to the unirradiated control was observed regardless of the time intervals, although H & E examination of the sample specimens demonstrated progressive fibrotic changes of the irradiated lung samples. Conclusion: In conclusion, according to our data, it is suggested that various thioredoxin peroxidase subtypes and catalase which are known to be increased in many repair processes may not be involved in the repair of the radiation injury to the lung and subsequent fibrosis.
Activities of glutathione- and thioredoxin-related enzymes and phenylpropanoid-synthesizing enzymes were measured and compared in the developing leaves of Arabidopsis thaliana. Phenylalanine ammonia-lyase activity is maximal in the leaves of 2-wk-grown Arabidopsis. Tyrosine ammonia-lyase activity is maximal in the leaves of 3-wk-grown and 4-wk-grown Arabidopsis. Activity of thioitransferase, an enzyme involved in the reduction of various disulfide compounds, is higher in younger leaves than in older ones. A similar pattern was obtained in the activity of thioredoxin, a small protein known as a cofactor of ribonucleotide reductase and a regulator of photosynthesis. Activity of glutathione reductase is also higher in the younger leaves. Malate debydrogenase activity remains relatively constant during the development of Arabidopsis leaves. The results offer preliminary information for further approach to elucidate the mechanism of growth-dependent variations of these enzymes.
A challenge in the redox field is the elucidation of the molecular mechanisms, by which $H_2O_2$ mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the $H_2O_2$ sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in $H_2O_2$ signaling that are not mutually exclusive. In the simplest pathway, $H_2O_2$ signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by $H_2O_2$ is too slow ($10^1M^{-1}s^{-1}$ range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high $H_2O_2$ concentrations, making the direct oxidation feasible. Alternatively, high $H_2O_2$ levels can hyperoxidize peroxiredoxins leading to local building up of $H_2O_2$ that then could oxidize a signaling protein (floodgate hypothesis). In a second model, $H_2O_2$ oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.
Antioxidant and redox enzyme activities are known to be involved in the cellular responses to various stresses. Their variations were observed according to the growth cycle of the fission yeast Schizosaccharomyces pombe. Peroxidase activity appeared to be notably higher in the early exponential phase than in the mid-exponential and stationary phases. However, catalase activity showed a variation pattern resembling the growth curve. Glutathione S-transferase activity was higher in the early exponential and late stationary phases. Activities of the two redox enzymes, thioredoxin and thioltransferase (glutaredoxin), were high in the stationary phase. However, their activities appeared to increase from the early exponential to mid-exponential phase. Total glutathione content had a varying pattern similar to that of thioredoxin and thioltransferase. However, its content in the early exponential phase was high. These results propose that antioxidant and redox enzymes tested are also involved in the mechanism of cell growth.
YKR049C is a mitochondrial protein in Saccharomyces cerevisiae that is conserved among yeast species, including Candida albicans. However, no biological function for YKR049C has been ascribed based on its primary sequence information. In the present study, NMR spectroscopy was used to determine the putative biological function of YKR049C based on its solution structure. YKR049C shows a well-defined thioredoxin fold with a unique insertion of helices between two $\beta$-strands. The central $\beta$-sheet divides the protein into two parts; a unique face and a conserved face. The 'unique face' is located between ${\beta}2$ and ${\beta}3$. Interestingly, the sequences most conserved among YKR049C families are found on this 'unique face', which incorporates L109 to E114. The side chains of these conserved residues interact with residues on the helical region with a stretch of hydrophobic surface. A putative active site composed by two short helices and a single Cys97 was also well observed. Our findings suggest that YKR049C is a redox protein with a thioredoxin fold containing a single active cysteine.
The nascent thyroglobulin (Tg) multimer molecule, which is generated during the initial fate of Tg in ER, undergoes the rapid reductive depolymerization. In an attempt to determine the depolymerization process, various types of Tg multimers, which were generated from deoxycholate-treated/reduced Tg, partially unfolded Tg or partially unfolded/reduced Tg, were subjected to various GSH (reduced glutathione) reducing systems using protein disulfide isomerase (PDI), glutathione reductase (GR), glutaredoxin or thioredoxin reductase. The Tg multimers generated from deoxycholate-treated/reduced Tg were depolymerized readily by the PDI/GSH system, which is consistent with the reductase activity of PDI. The PDI/GSH-induced depolymerization of the Tg multimers, which were generated from either partially unfolded Tg or partially unfolded/reduced Tg, required the simultaneous inclusion of glutathione reductase, which is capable of reducing glutathionylated mixed disulfide (PSSG). This suggests that PSSG was generated during the Tg multimerization stage or its depolymerization stage. In particular, the thioredoxin/thioredoxin reductase system or glutaredoxin system was also effective in depolymerizing the Tg multimers generated from the unfolded Tg. Overall, under the net GSH condition, the depolymerization of Tg multimers might be mediated by PDI, which is assisted by other reductive enzymes, and the mechanism for depolymerizing the Tg multimers differs according to the type of Tg multimer containing different degrees and types of disulfide linkages.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.