• 제목/요약/키워드: thiol group

검색결과 111건 처리시간 0.023초

표면 미세 가공 기술로 제작된 Piezoresistive Microcantilever를 이용한 바이오 센서의 제작 및 특성 (Fabrication of Piezoresistive Microcantilever using Surface Micromachining Technique for Biosensors)

  • 나광호;강치중;김용상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.2134-2136
    • /
    • 2004
  • A microcantilever-based biosensor with piezoresistor has been fabricated using surface micromachining technique, which is cost effective and simplifies a fabrication procedure. To evaluate the characteristics of the cantilever, the cystamine terminated with thiol was covalently immobilized on the gold-coated side of the cantilever and glutaraldehyde that would be bonded with amine group in the cystamine was injected subsequently. This process was characterized by measuring the deflection of the cantilever in real time monitoring. Using a piezoresistive read-out and a well-known optical beam deflection method as well carried out the measurement of deflection.

  • PDF

Surface Modification of Zinc Oxide Nanorods with Zn-Porphyrin via Metal-Ligand Coordination for Photovoltaic Applications

  • Koo, Jae-Hong;Cho, Jin-Ju;Yang, Jin-Ho;Yoo, Pil-J.;Oh, Kyung-Wha;Park, Ju-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.636-640
    • /
    • 2012
  • We modify ZnO nanorods with Zn-porphyrin to obtain the improved characteristics of energy transfer, which is further investigated for the applicability to photovoltaic devices. A nitrogen heterocyclic ligand containing a thiol group is covalently grafted onto the surface of finely structured ZnO nanorods with a length of 50-250 nm and a diameter of 15-20 nm. Zn-porphyrin is then attached to the ligand molecules by the mechanism of metalligand axial coordination. The resulting energy band diagram suggests that the porphyrin-modified ZnO nanorods might provide an efficient pathway for energy transfer upon being applied to photovoltaic devices.

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • 한국전기전자재료학회논문지
    • /
    • 제19권10호
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

STM을 이용한 Dipyridinium 유기 단분자막의 모폴로지 관찰 및 전기적 특성 연구 (Study on the Mophology Observation and Electrical Properties of Dipyridinium Organic Monolayer Using STM)

  • 이남석;신훈규;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.51-54
    • /
    • 2005
  • In this work, the attempt has been made to investigate the morphology of self-assembled dipyridinium dithioacetate on Au(111) substrate by Scanning Tunneling Microscopy(STM). Also, we measured electrical properties(I-V) using Scanning Tunneling Spectroscopy(STS). Sample used in this experiment is dipyridinium dithioacetate, which contains thiol functional group, this structure that can be self-assembled easily to Au(111) substrate. The self-assembly procedure was used for two different concentrations, 0.5 mM/ml and 1 mM/ml. Dilute density of sample by 0.5 mM/ml, 1 mM/ml and observed dipyridinium dithioacetate's image by STM after self-assembled on Au(111) substrate. The structure of STM tip-SAMs-Au(111) substrate has been used measurement for electrical properties(I-V) using STS. The current-voltage(I-V) measurement result, observed negative differential resistance(NDR) properties.

Redox-modulation of NMDA receptor activity by nitric oxide congeners

  • Kim, Won-Ki;Stuart A. Lipton
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.125-132
    • /
    • 1995
  • In neurons, nitric oxide(NO) is produced by neuronal nitric oxide synthase following stimulation of N-methyl-D-aspartate(NMDA) receptors and the subsequent influx of Ca$\^$2+/. NO, induced in this manner, reportedly plays critical roles in neuronal plasticity, including neurite outgrowth, synaptic transmission, and long-term potentiation(LTP) (1-7). However, excessive activation of NMDA receptors has also been shown to be associated with various neurological disorders, including focal ischemia, epilepsy, trauma, neuropathic pain and chronic neurodegenerative maladies, such as Parkinson's disease, Hungtington's disease and amyotrophic lateral sclerosis(8). The paradox that nitric oxide(NO) has both neuroprotective and neurodestructive effects may be explained, at least in part, by the finding that NO effects on neurons are dependent on the redox state. This claim may be supported by the recent finding that tissue concentrations of cysteine approach 700 ${\mu}$M in settings of cerebral ischemia (9), levels of thiol that is expected to influence both the redox state of the system and the NO group itself(10).

  • PDF

흰쥐 대뇌피질 신경세포에 미치는 호모시스틴의 신경독성에 대한 S-nitrosation의 역할 (S-nitrosation Ameliorates Homocysteine-mediated Neurotoxicity in Primary Culture of Bat Cortical Neurons)

  • 김원기
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.169-175
    • /
    • 1996
  • The reactivity of the sulfhydryl (thiol) group of homocysteine has been associated with an Increased risk of atherosclerosis, thrombosis and stroke. Thiols also react with nitric oxide (NO, an endothelium-derived relaxing factor (EDRF) ), forming S-nitrosothiols that have been reported to have potent vasodilatory and antiplatelet effects and been expected to decrease adverse vascular effects of homocysteine. The present study was aimed to Investigate whether the S-nitrosation of homocysteine modulates the neurotoxic effects of homocysteine. An 18 hour-exposure of cultured rat cortical neurons to homocysteine ( >1 mM) resulted in a significant neuronal cell death. At comparable concentrations ( <10 mM), however, S-nitrosohomocysteine did not induce neuronal cell death. Furthermore, S-nitrosohomocysteirle partially blocked NMDA-mediated neurotoxicity. S-nitrosohomocysteine also decreased NMDA-mediated increases in intracellular calcium concentration. The present data indicate that in brain nitric oxide produced from neuronal and nonneuronal cells can modulate the potential, adverse properties of homocysteine.

  • PDF

비수식화 DNA를 이용한 유전자 검출 및 새로운 DNA칩의 개발 (Development of New DNA Chip and Genome Detection Using an Indicator-free Target DNA)

  • Park, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tomoji Kawai
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권8호
    • /
    • pp.365-370
    • /
    • 2003
  • This research aims to develop an indicator-free DNA chip using micro-fabrication technology. At first, we fabricated a DNA microarray by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then indicator-free target DNA was hybridized by an electrical force and measured electrochemically in potassium ferricyanide solution. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in an anodic peak current. Therefore, it is able to detect various genes electrochemically after immobilization of various probe DNAs and hybridization of indicator-free DNA on the electrodes simultaneously It suggested that this DNA chip could recognize the sequence specific genes.

비수식화 DNA를 이용한 차세대형 바이오칩의 개발 (Development of Next Generation Biochip Using Indicator-free DNA)

  • 최용성;문종대;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.71-73
    • /
    • 2006
  • This research aims to develop a multiple channel electrochemical DNA chip using micro- fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore. it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Sulfhydryl Oxidation Regulates Cloned Mechanosensitive Two-Pore $K^+$ Channel Expressed in Mammalian Cell Lines

  • Kim, Yangmi;Park, Kyoung-Sun;Earm, Yung-E;Ho, Won-Kyung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.34-34
    • /
    • 2002
  • Oxidative stress has been considered as a major cause of inducing cell damage, but it is recently recognized that mild oxidative stress or receptor-mediated production of ROS contributes to the regulation of various cellular functions. Several ion channels, such as L-type $Ca^{2+}$ channels and $Ca^{2+}$-activated $K^{+}$ channels, have been shown to be regulated by oxidation of thiol group in their structure, and are suggested to be involved in ROS-sensitive cellular signaling.(omitted)

  • PDF

차세대형 바이오칩의 개발 및 비수식화 표적 DNA를 이용한 유전자 검출 (Development of New Biochip and Genome Detection Using an Non-labeling Target DNA)

  • 최용성;박대희;권영수;천합지인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.51-53
    • /
    • 2002
  • This research aims to develop a multiple channel electrochemical DNA chip using micro-fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore, it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF