DOI QR코드

DOI QR Code

Surface Modification of Zinc Oxide Nanorods with Zn-Porphyrin via Metal-Ligand Coordination for Photovoltaic Applications

  • Koo, Jae-Hong (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Cho, Jin-Ju (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Yang, Jin-Ho (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Yoo, Pil-J. (School of Chemical Engineering, Sungkyunkwan University) ;
  • Oh, Kyung-Wha (Department of Home Economics Education, Chung-Ang University) ;
  • Park, Ju-Hyun (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Received : 2011.11.22
  • Accepted : 2012.01.13
  • Published : 2012.02.20

Abstract

We modify ZnO nanorods with Zn-porphyrin to obtain the improved characteristics of energy transfer, which is further investigated for the applicability to photovoltaic devices. A nitrogen heterocyclic ligand containing a thiol group is covalently grafted onto the surface of finely structured ZnO nanorods with a length of 50-250 nm and a diameter of 15-20 nm. Zn-porphyrin is then attached to the ligand molecules by the mechanism of metalligand axial coordination. The resulting energy band diagram suggests that the porphyrin-modified ZnO nanorods might provide an efficient pathway for energy transfer upon being applied to photovoltaic devices.

Keywords

References

  1. Tokuhisa, H.; Hammond, P. T. Adv. Funct. Mater. 2003, 13, 831. https://doi.org/10.1002/adfm.200304404
  2. Garcia, M. A.; Merino, J. M.; Fernandez, E.; Quesada, A.; de la Venta, F.; Ruiz González, M. L.; Castro, G. R.; Crespo, P.; Llopis, J.; Gonzalez-Calbet, J. M.; Hernando, A. Nano Lett. 2007, 7, 14894.
  3. Rensmo, H.; Westermark, K.; Södergren, S.; Kohle, O.; Persson, P.; Lunell, S.; Siegbahn, H. J. Chem. Phys. 1999, 111, 2744. https://doi.org/10.1063/1.479551
  4. Robertson, N. Angew. Chem. Int. 2006, 45, 2338. https://doi.org/10.1002/anie.200503083
  5. Gratzel, M. Acc. Chem. Res. 2009, 42, 1788. https://doi.org/10.1021/ar900141y
  6. Ohlsson, J.; Wolpher, H.; Hagfeldt, A.; Grennberg, H.; J. Photochem. Photobiol. A 2002, 148, 41. https://doi.org/10.1016/S1010-6030(02)00037-0
  7. Bi, D.; Wu, F.; Yue, W.; Guo, Y.; Shen, W.; Peng, R.; Wu, H.; Wang, X.; Wang, M. J. Phys. Chem. C 2010, 114, 13846. https://doi.org/10.1021/jp103587y
  8. Said, A. J.; Poize, G.; Martini, C.; Ferry, D.; Marine, W.; Giorgio, S.; Fages, F.; Hocq, J.; Bouclé, J.; Nelson, J.; Durrant, J. R.; Ackermann, J. J. Phys. Chem. C 2010, 114, 11273. https://doi.org/10.1021/jp911125w
  9. Singh, J.; Im, J.; Whitten, J. E.; Soares, J. W.; Steeves, D. M. Chem. Phys. Lett. 2010, 497, 196. https://doi.org/10.1016/j.cplett.2010.08.009
  10. Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E. J. Am. Chem. Soc. 2007, 129, 4655. https://doi.org/10.1021/ja068218u
  11. Subbaiyan, N. K.; Wijesinghe, C. A.; D'Souza, F. J. Am. Chem. Soc. 2009, 131, 14646. https://doi.org/10.1021/ja9067113
  12. Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. 2002, 41, 1188. https://doi.org/10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5
  13. Zhang, J.; Liu, H.; Wang, Z.; Ming, N.; Li, Z.; Biris, A. S. Adv. Funct. Mater. 2007, 17, 3897. https://doi.org/10.1002/adfm.200700734
  14. Jung, S. H.; Oh, E.; Lee, K. H.; Jeong, S. H.; Yang, Y.; Park, C. G. Bull. Korean. Chem. Soc. 2007, 28, 1457. https://doi.org/10.5012/bkcs.2007.28.9.1457
  15. Sun, G.; Cao, M.; Wang, Y.; Hu, C.; Liu, Y.; Ren, L.; Pu, Z. Mater. Lett. 2006, 60, 2777. https://doi.org/10.1016/j.matlet.2006.01.088
  16. Singh, J.; Im, J.; Whitten, J. E. Langmuir 2009, 25, 9947. https://doi.org/10.1021/la9010983
  17. Sadik, P. W.; Pearton, S. J.; Norton, D. P.; Lambers, E.; Ren, F. J. Appl. Phys. 2007, 101, 104514. https://doi.org/10.1063/1.2736893
  18. Dvorak, J.; Jirsak, T.; Rodriguez, J. A. Surf. Sci. 2001, 479, 155. https://doi.org/10.1016/S0039-6028(01)00973-6
  19. Singh, J.; Whitten, J. E. J. Phys. Chem. 2008, 112, 19088.
  20. Barea, E. M.; Caballero, R.; Lopez-Arroyo, L.; Guerrero, A.; de la Cruz, P.; Langa, F.; Bisquert, J. Chem. Phys. Chem. 2011, 12, 961. https://doi.org/10.1002/cphc.201000958

Cited by

  1. Study on the interface electronic states of chemically modified ZnO nanowires vol.5, pp.119, 2015, https://doi.org/10.1039/C5RA20822J
  2. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods vol.8, pp.5, 2016, https://doi.org/10.1021/acsami.5b10858
  3. Control over Growth of Hexagonal Sodium Tungstate Nanorods by Poly(styrenesulfonate) vol.42, pp.10, 2013, https://doi.org/10.1246/cl.130526
  4. Study on the Surface Functionalization of ZnO Nanorods and Their Tunable Electrochemiluminescence Properties vol.5, pp.5, 2016, https://doi.org/10.1149/2.0111606jss
  5. Controlling ZnO/poly(N-vinylcarbazole) hybrid morphology via surface modification of ZnO quantum dots for optoelectronic applications vol.13, pp.2, 2018, https://doi.org/10.1049/mnl.2017.0506
  6. ZnO Functionalization: Metal–Dithiol Superstructures on ZnO(0001) by Self-Assembly vol.122, pp.5, 2012, https://doi.org/10.1021/acs.jpcc.7b12071
  7. ZnO Nanorods: An Advanced Cathode Buffer Layer for Inverted Perovskite Solar Cells vol.3, pp.12, 2012, https://doi.org/10.1021/acsaem.0c01945