DOI QR코드

DOI QR Code

Novel 4,7-Dithien-2-yl-2,1,3-benzothiadiazole-based Conjugated Copolymers with Cyano Group in Vinylene Unit for Photovoltaic Applications

  • Kim, Jin-Woo (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Heo, Mi-Hee (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology) ;
  • Jin, Young-Eup (Department of Industrial Chemistry, Pukyong National University) ;
  • Kim, Jae-Hong (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Shim, Joo-Young (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Song, Su-Hee (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of polymer Science and Engineering, Pusan National University) ;
  • Kim, Jin-Young (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology) ;
  • Suh, Hong-Suk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2011.12.23
  • Accepted : 2012.01.09
  • Published : 2012.02.20

Abstract

Two novel conjugated copolymers utilizing 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) coupled with cyano (-CN) substituted vinylene, as the electron deficient moeity, have been synthesized and evaluated in bulk heterojunction solar cell. The electron deficient moeity was coupled with carbazole and fluorene unit by Knoevenagel condition to provide poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9-(1-octylnonyl)-9H-carbazol-2-yl-2-butenenitrile) (PCVCNDTBT) and poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9,9-dihexyl-9H-fluoren-2-yl) (PFVCNDTBT). The optical band gaps of PCVCNDTBT (1.74 eV) and PFVCNDTBT (1.80 eV) are lower than those of PCDTBT (1.88 eV) and PFVDTBT (2.13 eV), which is advantageous to provide better coverage of the solar spectrum in the longer wavelength region. The high $V_{oc}$ value of the PSC of PCVCNDTBT (~0.91 V) is attributed to its lower HOMO energy level ( 5.6 eV) as compared to PCDTBT ( 5.5 eV). Bulk heterojunction solar cells based on the blends of the polymers with [6,6]phenyl-$C_{61}$-butyric acid methyl ester ($PC_{61}BM$) gave power conversion efficiencies of 0.76% for PCVCNDTBT under AM 1.5, 100 mW/$cm^2$.

Keywords

References

  1. Shi, C.; Yao, Y.; Yang, Y.; Pei, Q. J. Am. Chem. Soc. 2006, 128, 8980. https://doi.org/10.1021/ja061664x
  2. Muhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z. G.; Waller, D.; Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884. https://doi.org/10.1002/adma.200600160
  3. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497. https://doi.org/10.1038/nmat1928
  4. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732. https://doi.org/10.1021/ja0771989
  5. Huo, L.; He, C.; Han, M.; Zhou, E.; Li, Y. J. Polym. Sci. A: Polym. Chem. 2007, 45, 3861. https://doi.org/10.1002/pola.22136
  6. Li, K. C.; Hsu, Y. C.; Lin, J. T.; Yang, C. C.; Wei, K. H.; Lin, H. C. J. Polym. Sci. A: Polym. Chem. 2008, 46, 4285. https://doi.org/10.1002/pola.22715
  7. Cho, S.; Seo, J. H.; Kim, S. H.; Song, S.; Jin, Y.; Lee, K.; Suh, H.; Heeger, A. J. Appl.Phys.Lett. 2008, 93, 263301. https://doi.org/10.1063/1.3059554
  8. Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O. Adv. Mater. 2003, 15, 988. https://doi.org/10.1002/adma.200304150
  9. Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.; Koetse, M. M. Appl. Phys. Lett. 2007, 90, 143506. https://doi.org/10.1063/1.2718488
  10. Boudreault, P. T.; Michaud, A.; Leclerc, M. Macromol. Rapid Commun. 2007, 28, 2176. https://doi.org/10.1002/marc.200700470
  11. Wang, E. G.; Wang, L.; Lan, L. F.; Luo, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y. Appl. Phys. Lett. 2008, 92, 033307. https://doi.org/10.1063/1.2836266
  12. Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295. https://doi.org/10.1002/adma.200602496
  13. Liao, L.; Dai, L. M.; Smith, A.; Durstock, M.; Lu, J. P.; Ding, J. F.; Tao, Y. Macromolecules 2007, 40, 9406. https://doi.org/10.1021/ma071825x
  14. Moulle, A. J.; Tsami, A.; Bunnagel, T. W.; Forster, M.; Kronenberg, N. M.; Scharber, M.; Koppe, M.; Morana, M.; Brabec, C. J.; Meerholz, K.; Scherf, U. Chem. Mater. 2008, 20, 4045. https://doi.org/10.1021/cm8006638
  15. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Lerclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3, 297. https://doi.org/10.1038/nphoton.2009.69
  16. Fu, Y. P.; Cheng, H. T.; Elsenbaumer, R. L. Chem. Mater. 1997, 9, 1720. https://doi.org/10.1021/cm960399j
  17. Jin, Y.; Ju, J.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Son, S. M.; Jin, S. H.; Lee, K.; Suh, H. Macromolecules 2003, 36, 6970. https://doi.org/10.1021/ma025862u
  18. Kim, J. Y.; Kim, S. H,; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. Adv. Mater. 2006, 18, 572. https://doi.org/10.1002/adma.200501825
  19. Zhang, X.; Yamaguchi, R.; Moriyama, K.; Kadowaki, M.; Kobayashi, T.; Ishi-i, T.; Thiemann, T.; Mataka, S. J. Mater. Chem. 2006, 16, 736. https://doi.org/10.1039/b512493j
  20. Jin, Y.; Ju, J.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Son, S. M.; Jin, S. H.; Lee, K.; Suh, H. Macromolecules 2003, 36, 6970. https://doi.org/10.1021/ma025862u
  21. Ko, S.; Mondal, R.; Risko, C.; Lee, J. K.; Hong, S.; McGehee, M. D.; Bredas, J. L.; Bao, Z. Macromolecules 2010, 43, 6685. https://doi.org/10.1021/ma101088f
  22. Jin, S. H.; Kim, M. Y.; Kim, J. Y.; Lee, K.; Gal, Y. S. J. Am. Chem. Soc. 2004, 126, 2474. https://doi.org/10.1021/ja036955+
  23. Leeuw, D. M.; Simenon, M. J.; Brown, A. R. Synth. Met. 1997, 87, 53. https://doi.org/10.1016/S0379-6779(97)80097-5
  24. Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; Van Hal, P. A.; Janssen, R. A. Adv. Funct. Mater. 2002, 12, 709. https://doi.org/10.1002/1616-3028(20021016)12:10<709::AID-ADFM709>3.0.CO;2-N
  25. Dhanabalan, A.; Van Duren, J. K. J.; Van Hal, P. A.; Van Dongen, J. L. J.; Janssen, R. A. J. Adv. Funct. Mater. 2001, 11, 255. https://doi.org/10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-I
  26. Blom, P. W. M.; deJong, M. J. M.; vanMunster, M. G. Phys. Rev. B 1997, 55, R656. https://doi.org/10.1103/PhysRevB.55.R656
  27. Brabec, C. J. Sol. Energy Mater. Sol. Cells 2004, 83, 273. https://doi.org/10.1016/j.solmat.2004.02.030

Cited by

  1. Understanding the colorimetric properties of quinoxaline-based pi-conjugated copolymers by tuning their acceptor strength: a joint theoretical and experimental approach vol.7, pp.36, 2017, https://doi.org/10.1039/C7RA02535A
  2. Poly(arylene vinylene) Synthesis via a Precursor Step-Growth Polymerization Route Involving the Ramberg-Bäcklund Reaction as a Key Post-Chemical Modification Step vol.51, pp.15, 2012, https://doi.org/10.1021/acs.macromol.8b00676