• Title/Summary/Keyword: thin-layer method

Search Result 1,387, Processing Time 0.027 seconds

The Dielectric Characteristics of BST Thin Film Devices (BST 박막 소자의 유전특성)

  • 홍경진;민용기;신훈규;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.660-663
    • /
    • 2001
  • The devices of BST thin films to composite (Ba$\_$0.7/ Sr$\_$0.3/)TiO$_3$using sol-gel method were fabricated by changing of the depositing layer number on Pt/Ti/SiO$_2$/Si substrate. The thin film capacitor to be ferroelectric devices was investigated by structural and electrical properties. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was 2500[${\AA}$], 3500[${\AA}$], 3800[${\AA}$]. The dielectric factor of thin film when the coating numbers were 3, 4 and 5 times was 190, 400 and 460 on frequency 1[MHz]. The dielectric loss of BST thin film was linearly increased by increasing of the specimen area.

  • PDF

Crack-Free Fabrications of Yttria-Stabilized Zirconia Films Using Successive-Ionic-Layer-Adsorption-and-Reaction and Air-Spray Plus Method

  • Taeyoon Kim;Sangmoon Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.79-84
    • /
    • 2024
  • Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 ℃) and furnace (500 ℃) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.

Effects of surface geometry of MgO protective layer for AC-PDPs

  • Park, Sun-Young;Moon, Sung-Hwan;Heo, Tae-Wook;Kim, Jae-Hyuk;Lee, Joo-Hwi;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1395-1398
    • /
    • 2007
  • MgO thin films were deposited by e-beam evaporator using the 2-step method for alternate current plasma display panels (AC-PDPs). Glancing angle deposition (GLAD) method was employed to produce various surface geometry of the thin film; the bottom layer was deposited on a substrate by normal e-beam evaporation method and the top layer was deposited on bottom layer with $85^{\circ}$ by GLAD method. Results show that firing and sustain voltages improved as the sharpness of surface and isolated columnar structures increases, respectively.

  • PDF

Preparation of Co-Cr-Ta Thin Films using Two step Method For Perpendicular Magnetic recording Layer (Two-Step 방식을 이용한 수직자기 기록용 Co-Cr-Ta 박막의 제작)

  • 박원효;공석현;제우성;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.793-796
    • /
    • 2004
  • In order to improve c-axis crystalline orientation and high perpendicular coercivity of deposited ${Co}_77{Cr}_20{Ta}_3$perpendicualr recording layer, Two step method was investigated using a Facing Targets Sputtering System(FTS). The ${\Delta\theta}_50$ of ${Co}_77{Cr}_20{Ta}_3$recording layer deposited on seedlayer prepared at Room Temperature was as low as $5^\circ$, while that of the recording layer without seedlayer was about 11$^{\circ}$. The Two-Step method using ${Co}_77{Cr}_20{Ta}_3$seedlayer prepared at Room Temperature was shown to be very effective in controling the c-axis orientation of ${Co}_77{Cr}_20{Ta}_3$ recording layer with thin thickness.

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

Effect of the MgO buffer layer for MFIS structure using the BLT thin film (BLT 박막을 이용한 MFIS 구조에서 MgO buffer layer의 영향)

  • Lee, Jung-Mi;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.23-26
    • /
    • 2003
  • The BLT thin film and MgO buffer layer were fabricated using a metalorganic decomposition method and the DC sputtering technique. The MgO thin film was deposited as a buffer layer on $SiO_2/Si$ and BLT thin films were used as a ferroelectric layer. The electrical of the MFIS structure were investigated by varying the MgO layer thickness. TEM showsno interdiffusion and reaction that suppressed by using the MgO film as abuffer layer. The width of the memory window in the C-Y curves for the MFIS structure decreased with increasing thickness of the MgO layer Leakage current density decreased by about three orders of magnitude after using MgO buffer layer. The results show that the BLT and MgO-based MFIS structure is suitable for non-volatile memory FETs with large memory window.

  • PDF

Fabrication of Bi-superconducting Thin Films by Layer-by-layer Sputtering Method

  • Jung, Jin-in;Lee, Hee-Kab;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.77-80
    • /
    • 1999
  • Bi$_2$Sr$_2$CuO$\sub$x/ thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering(IBS) method. XRD and RHEED investigations reveal that a buffer layer with compositions different from Bi-2201 is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF

Spray Pyrolysis Deposition of Zinc Oxide Thin Films by ZnO Buffer Layer (ZnO buffer 층을 이용한 초음파 분무열분해 ZnO 박막 증착)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.403-408
    • /
    • 2017
  • We investigated the effect of ZnO buffer layer on the formation of ZnO thin film by ultrasonic assisted spray pyrolysis deposition. ZnO buffer layer was formed by wet solution method, which was repeated several times. Structural and optical properties of the ZnO thin films deposited on the ZnO buffer layers with various cycles and at various temperatures were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. The structural investigations showed that three-dimensional island shaped ZnO was formed on the bare Si substrate without buffer layers, while two-dimensional ZnO thin film was deposited on the ZnO buffer layers. In addition, structural and optical investigations showed that the crystalline quality of ZnO thin film was improved by introducing the buffer layers. This improvement was attributed to the modulation of the surface energy of the Si surface by the ZnO buffer layer, which finally resulted in a modification of the growth mode from three to two-dimensional.

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

Floating Gate Organic Memory Device with Tunneling Layer's Thickness (터널링 박막 두께 변화에 따른 부동 게이트 유기 메모리 소자)

  • Kim, H.S.;Lee, B.J.;Shin, P.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.354-361
    • /
    • 2012
  • The organic memory device was made by the plasma polymerization method which was not the dry process but the wet process. The memory device consist of the styrene and MMA monomer as the insulating layer, MMA monomer as the tunneling layer and Au thin film as the memory layer which was fabricated by thermal evaporation method. The I-V characteristics of fabricated memory device got the hysteresis voltage of 27 V at 40/-40 V double sweep measuring conditions. At this time, the optimized structure was 7 nm of Au thin film as floating gate, 400 nm of styrene thin film as insulating layer and 30 nm of MMA thin film as tunneling layer. Therefore we got the charge trapping characteristics by the hysteresis voltage. From the paper, styrene indicated a good charge trapping characteristics better than MMA. In the future, we expect to make devices by using styrene thin film rather than Au thin film.